
Fernando patolsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3057281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Breathing parylene-based nanothin artificial SEI for highly-stable long life three-dimensional silicon lithium-ion batteries. Chemical Engineering Journal, 2022, 429, 132077.	12.7	18
2	Self-transforming stainless-steel into the next generation anode material for lithium ion batteries. Journal of Energy Chemistry, 2022, 64, 432-441.	12.9	9
3	Singleâ€Step Solidâ€State Scalable Transformation of Niâ€Based Substrates to Highâ€Oxidation State Nickel Sulfide Nanoplate Arrays as Exceptional Bifunctional Electrocatalyst for Overall Water Splitting. Small Methods, 2022, 6, e2200181.	8.6	14
4	Three-Dimensional Monolithically Self-Grown Metal Oxide Highly Dense Nanonetworks as Free-Standing High-Capacity Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 28911-28923.	8.0	7
5	Diversely Doped Uniform Silicon Nanotube Axial Heterostructures Enabled by "Dopant Reflection― Langmuir, 2021, 37, 1247-1254.	3.5	3
6	Synthesis and electrochemical performance of silicon-nanowire alloy anodes. RSC Advances, 2021, 11, 26586-26593.	3.6	6
7	Optically transparent vertical silicon nanowire arrays for live-cell imaging. Journal of Nanobiotechnology, 2021, 19, 51.	9.1	15
8	Pouchâ€Cell Architecture Downscaled to Coin Cells for Electrochemical Characterization of Bilateral Electrodes**. Batteries and Supercaps, 2021, 4, 767-770.	4.7	0
9	Clinic-on-a-Needle Array toward Future Minimally Invasive Wearable Artificial Pancreas Applications. ACS Nano, 2021, 15, 12019-12033.	14.6	35
10	Ultrafast high-capacity capture and release of uranium by a light-switchable nanotextured surface. Nanoscale Advances, 2021, 3, 3615-3626.	4.6	3
11	Rapid Collection and Aptamer-Based Sensitive Electrochemical Detection of Soybean Rust Fungi Airborne Urediniospores. ACS Sensors, 2021, 6, 1187-1198.	7.8	13
12	Depletion of Highly Abundant Protein Species from Biosamples by the Use of a Branched Silicon Nanopillar On-Chip Platform. Analytical Chemistry, 2021, 93, 14527-14536.	6.5	6
13	Engineered nano-bio interfaces for intracellular delivery and sampling: Applications, agency and artefacts. Materials Today, 2020, 33, 87-104.	14.2	40
14	Direct Detection of Uranyl in Urine by Dissociation from Aptamer-Modified Nanosensor Arrays. Analytical Chemistry, 2020, 92, 12528-12537.	6.5	27
15	Direct whole blood analysis by the antigen-antibody chemically-delayed dissociation from nanosensors arrays. Biosensors and Bioelectronics, 2020, 170, 112658.	10.1	7
16	Real-time monitoring of bacterial biofilms metabolic activity by a redox-reactive nanosensors array. Journal of Nanobiotechnology, 2020, 18, 81.	9.1	18
17	Redox-Reactive Field-Effect Transistor Nanodevices for the Direct Monitoring of Small Metabolites in Biofluids toward Implantable Nanosensors Arrays. ACS Nano, 2020, 14, 3587-3594.	14.6	12
18	Thermally-treated nanowire-structured stainless-steel as an attractive cathode material for lithium-ion batteries. Nano Energy, 2020, 76, 105054.	16.0	6

#	Article	IF	CITATIONS
19	Analysis of Scale-up Parameters in 3D Silicon-Nanowire Lithium-Battery Anodes. Journal of the Electrochemical Society, 2020, 167, 050511.	2.9	15
20	Self-Catalyzed Vertically Aligned Carbon Nanotube–Silicon Core–Shell Array for Highly Stable, High-Capacity Lithium-Ion Batteries. Langmuir, 2020, 36, 889-896.	3.5	29
21	Light-Controlled Selective Collection-and-Release of Biomolecules by an On-Chip Nanostructured Device. Nano Letters, 2019, 19, 5868-5878.	9.1	23
22	Shape induced sorting <i>via</i> rim-to-rim complementarity in the formation of pillar[5, 6]arene-based supramolecular organogels. Organic Chemistry Frontiers, 2019, 6, 3348-3354.	4.5	12
23	Vapor Trace Collection and Direct Ultrasensitive Detection of Nitro-Explosives by 3D Microstructured Electrodes. Analytical Chemistry, 2019, 91, 14375-14382.	6.5	8
24	Direct and Selective Electrochemical Vapor Trace Detection of Organic Peroxide Explosives via Surface Decoration. Analytical Chemistry, 2019, 91, 5323-5330.	6.5	33
25	Cellular Metabolomics by a Universal Redox-Reactive Nanosensors Array: From the Cell Level to Tumor-on-a-Chip Analysis. Nano Letters, 2019, 19, 2478-2488.	9.1	18
26	Large-Scale Self-Catalyzed Spongelike Silicon Nano-Network-Based 3D Anodes for High-Capacity Lithium-Ion Batteries. Nano Letters, 2019, 19, 1944-1954.	9.1	53
27	Controlled Formation of Radial Core–Shell Si/Metal Silicide Crystalline Heterostructures. Nano Letters, 2018, 18, 70-80.	9.1	1
28	Multicolor Spectral-Specific Silicon Nanodetectors based on Molecularly Embedded Nanowires. Nano Letters, 2018, 18, 190-201.	9.1	22
29	Pillarareneâ€Based Twoâ€Component Thixotropic Supramolecular Organogels: Complementarity and Multivalency as Prominent Motifs. Chemistry - A European Journal, 2018, 24, 15695-15695.	3.3	1
30	Novel non-invasive early detection of lung cancer using liquid immunobiopsy metabolic activity profiles. Cancer Immunology, Immunotherapy, 2018, 67, 1135-1146.	4.2	5
31	Spatially resolved measurement of plasmon dispersion using Fourier-plane spectral imaging. Photonics Research, 2018, 6, 653.	7.0	4
32	Pillarareneâ€Based Twoâ€Component Thixotropic Supramolecular Organogels: Complementarity and Multivalency as Prominent Motifs. Chemistry - A European Journal, 2018, 24, 15750-15755.	3.3	14
33	Novel non invasive early detection of lung cancer using liquid immunobiopsy metabolic activity profiles. , 2018, , .		0
34	Optically driven ultra-stable nanomechanical rotor. Nature Communications, 2017, 8, 1670.	12.8	83
35	Full rotational control of levitated silicon nanorods. Optica, 2017, 4, 356.	9.3	105
36	Antigen-Dissociation from Antibody-Modified Nanotransistor Sensor Arrays as a Direct Biomarker Detection Method in Upprocessed Biosamples, Nano Letters, 2016, 16, 6272-6281	9.1	52

#	Article	IF	CITATIONS
37	Nanodicing Single Crystalline Silicon Nanowire Arrays. Nano Letters, 2016, 16, 6960-6966.	9.1	16
38	Tissue-like Silicon Nanowires-Based Three-Dimensional Anodes for High-Capacity Lithium Ion Batteries. Nano Letters, 2015, 15, 3907-3916.	9.1	111
39	Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson–Crick base pairing. Nature Nanotechnology, 2015, 10, 353-360.	31.5	136
40	Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations. Nano Letters, 2015, 15, 4758-4768.	9.1	35
41	Probing the Interactions of Intrinsically Disordered Proteins Using Nanoparticle Tags. Nano Letters, 2015, 15, 3080-3087.	9.1	14
42	Cavity-Assisted Manipulation of Freely Rotating Silicon Nanorods in High Vacuum. Nano Letters, 2015, 15, 5604-5608.	9.1	62
43	Monolithic Integration of a Silicon Nanowire Field-Effect Transistors Array on a Complementary Metal-Oxide Semiconductor Chip for Biochemical Sensor Applications. Analytical Chemistry, 2015, 87, 9982-9990.	6.5	34
44	DETERMINATION OF HYDROXYPYRENE TRISULFONATE BY TWO WAVELENGTH EXCITATION FLUORESCENCE USING A ONE MICROLITER CAPILLARY. Instrumentation Science and Technology, 2014, 42, 627-634.	1.8	0
45	Long-term room-temperature hydrazine/air fuel cells based on low-cost nanotextured Cu–Ni catalysts. Journal of Power Sources, 2014, 246, 423-429.	7.8	49
46	Morphological and chemical stability of silicon nanostructures and their molecular overlayers under physiological conditions: towards long-term implantable nanoelectronic biosensors. Journal of Nanobiotechnology, 2014, 12, 7.	9.1	33
47	Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays. Nature Communications, 2014, 5, 4195.	12.8	169
48	Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today, 2014, 9, 172-196.	11.9	125
49	Nanobiotechnology: synthetic biology meets materials science. Current Opinion in Biotechnology, 2013, 24, 551-554.	6.6	9
50	Large-scale ordered 1D-nanomaterials arrays: Assembly or not?. Nano Today, 2013, 8, 677-694.	11.9	73
51	Excited-State Proton Transfer and Proton Diffusion near Hydrophilic Surfaces. Journal of Physical Chemistry C, 2013, 117, 25786-25797.	3.1	19
52	Nanotechnology meets electrophysiology. Current Opinion in Biotechnology, 2013, 24, 654-663.	6.6	11
53	Optically-Gated Self-Calibrating Nanosensors: Monitoring pH and Metabolic Activity of Living Cells. Nano Letters, 2013, 13, 3157-3168.	9.1	48
54	Innenrücktitelbild: Unwrapping Core-Shell Nanowires into Nanoribbon-Based Superstructures (Angew. Chem. 43/2013). Angewandte Chemie, 2013, 125, 11637-11637.	2.0	0

#	Article	IF	CITATIONS
55	Unwrapping Core–Shell Nanowires into Nanoribbonâ€Based Superstructures. Angewandte Chemie - International Edition, 2013, 52, 11298-11302.	13.8	4
56	On-Surface Formation of Metal Nanowire Transparent Top Electrodes on CdSe Nanowire Array-Based Photoconductive Devices. ACS Applied Materials & Interfaces, 2012, 4, 3157-3162.	8.0	22
57	Controlled Synthesis of Ferromagnetic Semiconducting Silicon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 8000-8007.	3.1	10
58	Non-covalent Monolayer-Piercing Anchoring of Lipophilic Nucleic Acids: Preparation, Characterization, and Sensing Applications. Journal of the American Chemical Society, 2012, 134, 280-292.	13.7	47
59	Si Nanowires Forest-Based On-Chip Biomolecular Filtering, Separation and Preconcentration Devices: Nanowires Do it All. Nano Letters, 2012, 12, 4748-4756.	9.1	102
60	2 Interfacing Biomolecules, Cells and Tissues with Nanowire-based Electrical Devices. Modern Aspects of Electrochemistry, 2012, , 67-104.	0.2	5
61	From Crystalline Germanium–Silicon Axial Heterostructures to Silicon Nanowire–Nanotubes. Nano Letters, 2012, 12, 1121-1128.	9.1	29
62	Highly Ordered Large-Scale Neuronal Networks of Individual Cells – Toward Single Cell to 3D Nanowire Intracellular Interfaces. ACS Applied Materials & Interfaces, 2012, 4, 3542-3549.	8.0	51
63	Biorecognition Layer Engineering: Overcoming Screening Limitations of Nanowire-Based FET Devices. Nano Letters, 2012, 12, 5245-5254.	9.1	197
64	Confinement-Guided Shaping of Semiconductor Nanowires and Nanoribbons: "Writing with Nanowires― Nano Letters, 2012, 12, 7-12.	9.1	77
65	Hydrazine/air direct-liquid fuel cell based on nanostructured copper anodes. Journal of Power Sources, 2012, 204, 116-121.	7.8	67
66	Synthesis and cathodoluminescence properties of CdSe/ZnO hierarchical nanostructures. Journal of Materials Chemistry, 2011, 21, 3858.	6.7	14
67	Nanotextured Metal Copper Substrates as Powerful and Long-Lasting Fuel Cell Anodes. Nano Letters, 2011, 11, 1727-1732.	9.1	18
68	Wall-Selective Chemical Alteration of Silicon Nanotube Molecular Carriers. Journal of the American Chemical Society, 2011, 133, 1545-1552.	13.7	27
69	Highly active engineered-enzyme oriented monolayers: formation, characterization and sensing applications. Journal of Nanobiotechnology, 2011, 9, 26.	9.1	15
70	Heteroepitaxial Si/ZnO Hierarchical Nanostructures for Future Optoelectronic Devices. ChemPhysChem, 2010, 11, 809-814.	2.1	20
71	A Route to Highâ€Quality Crystalline Coaxial Core/Multishell Ge@Si(GeSi) _{<i>n</i>} and Si@(GeSi) _{<i>n</i>} Nanowire Heterostructures. Advanced Materials, 2010, 22, 902-906.	21.0	43
72	Supersensitive Detection of Explosives by Silicon Nanowire Arrays. Angewandte Chemie - International Edition, 2010, 49, 6830-6835.	13.8	254

Fernando patolsky

#	Article	IF	CITATIONS
73	Cover Picture: Supersensitive Detection of Explosives by Silicon Nanowire Arrays (Angew. Chem. Int.) Tj ETQq1	1 0.784314 13.8	rgBT /Overlo
74	Electrochemical Synthesis of Morphology-Controlled Segmented CdSe Nanowires. ACS Nano, 2010, 4, 1901-1906.	14.6	38
75	Knocking Down Highly-Ordered Large-Scale Nanowire Arrays. Nano Letters, 2010, 10, 1202-1208.	9.1	87
76	The Influence of Doping on the Chemical Composition, Morphology and Electrical Properties of Si _(1â^'<i>x</i>) Ge _{<i>x</i>} Nanowires. Journal of Physical Chemistry C, 2010, 114, 4331-4335.	3.1	16
77	Response to Comment on "Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays". Science, 2009, 323, 1429-1429.	12.6	8
78	Nanomaterials for Neural Interfaces. Advanced Materials, 2009, 21, 3970-4004.	21.0	460
79	Tubeâ€inâ€Tube and Wireâ€inâ€Tube Nano Building Blocks: Towards the Realization of Multifunctional Nanoelectronic Devices. Angewandte Chemie - International Edition, 2009, 48, 8699-8702.	13.8	22
80	Weak rectifying behaviour of p-SnS/n-ITO heterojunctions. Solid-State Electronics, 2009, 53, 630-634.	1.4	40
81	Shape- and Dimension-Controlled Single-Crystalline Silicon and SiGe Nanotubes: Toward Nanofluidic FET Devices. Journal of the American Chemical Society, 2009, 131, 3679-3689.	13.7	67
82	Temperature dependent structural properties of nanocrystalline SnS structures. Applied Physics Letters, 2009, 95, .	3.3	21
83	Pressure-Modulated Alloy Composition in Si _(1-<i>x</i>) Ge _{<i>x</i>} Nanowires. Nano Letters, 2009, 9, 1775-1779.	9.1	18
84	Synthesis of Hybrid Multicomponent Disklike Nanoparticles. Nano Letters, 2008, 8, 3964-3972.	9.1	28
85	Ohmic contacts to SnS films: Selection and estimation of thermal stability. Journal of Applied Physics, 2008, 104, .	2.5	62
86	Nanowire-Based Nanoelectronic Devices in the Life Sciences. MRS Bulletin, 2007, 32, 142-149.	3.5	323
87	Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays. Science, 2006, 313, 1100-1104.	12.6	797
88	Nanowire-Based Biosensors. Analytical Chemistry, 2006, 78, 4260-4269.	6.5	671
89	Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nature Protocols, 2006, 1, 1711-1724.	12.0	709
90	Nanowire sensors for medicine and the life sciences. Nanomedicine, 2006, 1, 51-65.	3.3	422

#	Article	IF	CITATIONS
91	Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology, 2005, 23, 1294-1301.	17.5	2,249
92	Electrochemical Control of the Photocurrent Direction in Intercalated DNA/CdS Nanoparticle Systems. Angewandte Chemie - International Edition, 2005, 44, 4554-4557.	13.8	133
93	Nanowire nanosensors. Materials Today, 2005, 8, 20-28.	14.2	667
94	Parallel and Complementary Detection of Proteins by p-type and n-type Silicon Nanowire Transistor Arrays. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	0
95	Actin-based metallic nanowires as bio-nanotransporters. Nature Materials, 2004, 3, 692-695.	27.5	231
96	Longâ€Range Electrical Contacting of Redox Enzymes by SWCNT Connectors. Angewandte Chemie - International Edition, 2004, 43, 2113-2117.	13.8	591
97	Amplified Telomerase Analysis by Using Rotating Magnetic Particles: The Rapid and Sensitive Detection of Cancer Cells. ChemBioChem, 2004, 5, 943-948.	2.6	32
98	Electrical detection of single viruses. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14017-14022.	7.1	1,208
99	Enzyme-Catalyzed Bio-Pumping of Electrons into Au-Nanoparticles:  A Surface Plasmon Resonance and Electrochemical Study. Journal of the American Chemical Society, 2004, 126, 7133-7143.	13.7	110
100	Electrochemical Assembly of a CdS Semiconductor Nanoparticle Monolayer on Surfaces:  Structural Properties and Photoelectrochemical Applications. Journal of Physical Chemistry B, 2004, 108, 5875-5881.	2.6	108
101	Magneto-Mechanical Detection of Nucleic Acids and Telomerase Activity in Cancer Cells. Journal of the American Chemical Society, 2004, 126, 1073-1080.	13.7	85
102	Telomerase-Generated Templates for the Growing of Metal Nanowires. Nano Letters, 2004, 4, 787-792.	9.1	68
103	Multiplexed Electrical Detection of Single Viruses. Materials Research Society Symposia Proceedings, 2004, 828, 97.	0.1	4
104	"Plugging into Enzymes": Nanowiring of Redox Enzymes by a Gold Nanoparticle. Science, 2003, 299, 1877-1881.	12.6	1,248
105	Title is missing!. Angewandte Chemie, 2003, 115, 2474-2478.	2.0	22
106	Highly Sensitive Amplified Electronic Detection of DNA By Biocatalyzed Precipitation of an Insoluble Product onto Electrodes. Chemistry - A European Journal, 2003, 9, 1137-1145.	3.3	80
107	Magnetically Amplified DNA Assays (MADA): Sensing of Viral DNA and Single-Base Mismatches by Using Nucleic Acid Modified Magnetic Particles. Angewandte Chemie - International Edition, 2003, 42, 2372-2376.	13.8	122
108	Amplified DNA Sensing and Immunosensing by the Rotation of Functional Magnetic Particles. Journal of the American Chemical Society, 2003, 125, 3452-3454.	13.7	116

#	Article	IF	CITATIONS
109	Lighting-Up the Dynamics of Telomerization and DNA Replication by CdSeâ^'ZnS Quantum Dots. Journal of the American Chemical Society, 2003, 125, 13918-13919.	13.7	354
110	Electrocatalytic intercalator-induced winding of double-stranded DNA with polyaniline. Chemical Communications, 2003, , 1540.	4.1	29
111	Redox-Active Nucleic-Acid Replica for the Amplified Bioelectrocatalytic Detection of Viral DNA. Journal of the American Chemical Society, 2002, 124, 770-772.	13.7	218
112	Electrical contacting of glucose dehydrogenase by the reconstitution of a pyrroloquinoline quinone-functionalized polyaniline film associated with an Au-electrode: an in situ electrochemical SPR study. Chemical Communications, 2002, , 1936-1937.	4.1	54
113	Amplified detection of single-base mismatches in DNA using microgravimetric quartz-crystal-microbalance transduction. Talanta, 2002, 56, 847-856.	5.5	137
114	Title is missing!. Angewandte Chemie, 2002, 114, 3548-3552.	2.0	28
115	Au-Nanoparticle Nanowires Based on DNA and Polylysine Templates. Angewandte Chemie - International Edition, 2002, 41, 2323-2327.	13.8	209
116	Amplified DNA Detection by Electrogenerated Biochemiluminescence and by the Catalyzed Precipitation of an Insoluble Product on Electrodes in the Presence of the Doxorubicin Intercalator. Angewandte Chemie - International Edition, 2002, 41, 3398-3402.	13.8	130
117	Electronic Transduction of DNA Sensing Processes on Surfaces:Â Amplification of DNA Detection and Analysis of Single-Base Mismatches by Tagged Liposomes. Journal of the American Chemical Society, 2001, 123, 5194-5205.	13.7	260
118	Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles. Analyst, The, 2001, 126, 1502-1504.	3.5	167
119	Probing of DNA and Single-Base Mismatches by Chemical Force Microscopy Using Peptide Nucleic Acid-Modified Sensing Tips and Functionalized Surfaces. Langmuir, 2001, 17, 5134-5136.	3.5	17
120	Photoelectrochemistry with Controlled DNA-Cross-Linked CdS Nanoparticle Arrays. Angewandte Chemie - International Edition, 2001, 40, 1861-1864.	13.8	319
121	Electronic Transduction of Polymerase or Reverse Transcriptase Induced Replication Processes on Surfaces: Highly Sensitive and Specific Detection of Viral Genomes. Angewandte Chemie - International Edition, 2001, 40, 2261-2265.	13.8	72
122	Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nature Biotechnology, 2001, 19, 253-257.	17.5	367
123	Electrochemical Transduction of Liposome-Amplified DNA Sensing. Angewandte Chemie - International Edition, 2000, 39, 940-943.	13.8	129
124	Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles. Chemical Communications, 2000, , 1025-1026.	4.1	146
125	Amplified Microgravimetric Quartz-Crystal-Microbalance Assay of DNA Using Oligonucleotide-Functionalized Liposomes or Biotinylated Liposomes. Journal of the American Chemical Society, 2000, 122, 418-419.	13.7	188
126	Ultrasensitive and Specific Electronic Transduction of DNA Sensing Processes. , 2000, , 47-78.		0

126 Ultrasensitive and Specific Electronic Transduction of DNA Sensing Processes. , 2000, , 47-78.

0

#	Article	IF	CITATIONS
127	Controlled electrocatalysis by microperoxidase-11 and Au-nanoparticle superstructures on conductive supports. Journal of Electroanalytical Chemistry, 1999, 479, 69-73.	3.8	107
128	Photochemical Imprint of Molecular Recognition Sites in Monolayers Assembled on Au Electrodes. Journal of the American Chemical Society, 1999, 121, 862-863.	13.7	74
129	Sensing and amplification of oligonucleotide-DNA interactions by means of impedance spectroscopy: a route to a Tay–Sachs sensor. Chemical Communications, 1999, , 21-22.	4.1	168
130	Precipitation of an Insoluble Product on Enzyme Monolayer Electrodes for Biosensor Applications:Â Characterization by Faradaic Impedance Spectroscopy, Cyclic Voltammetry, and Microgravimetric Quartz Crystal Microbalance Analyses. Analytical Chemistry, 1999, 71, 3171-3180.	6.5	229
131	Enzyme-Linked Amplified Electrochemical Sensing of Oligonucleotideâ `DNA Interactions by Means of the Precipitation of an Insoluble Product and Using Impedance Spectroscopy. Langmuir, 1999, 15, 3703-3706.	3.5	189
132	A Crosslinked Microperoxidase-11 and Nitrate Reductase Monolayer on a Gold Electrode: An Integrated Electrically Contacted Electrode for the Bioelectrocatalyzed Reduction of NO3â''. Chemistry - A European Journal, 1998, 4, 1068-1073.	3.3	46
133	C60-mediated bioelectrocatalyzed oxidation of glucose with glucose oxidase. Journal of Electroanalytical Chemistry, 1998, 454, 9-13.	3.8	53
134	Photoswitchable Antigenâ^'Antibody Interactions Studied by Impedance Spectroscopy. Journal of Physical Chemistry B, 1998, 102, 10359-10367.	2.6	103
135	Biofuel cell based on glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. Journal of the Chemical Society Perkin Transactions II, 1998, , 1817-1822.	0.9	101