List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/305696/publications.pdf Version: 2024-02-01

ΖΗΠΑΝΟΠΙΝ ΕΛΝ

#	Article	IF	CITATIONS
1	A facial synthesis of nitrogen-doped reduced graphene oxide quantum dot and its application in aqueous organics degradation. Green Energy and Environment, 2022, 7, 440-448.	8.7	9
2	Design of layered-stacking graphene assemblies as advanced electrodes for supercapacitors. Particuology, 2022, 60, 1-13.	3.6	9
3	3D interconnected porous carbon derived from spontaneous merging of the nano-sized ZIF-8 polyhedrons for high-mass-loading supercapacitor electrodes. Journal of Materials Chemistry A, 2022, 10, 2027-2034.	10.3	23
4	Ni, Co Hydroxide Modified by Partial Substitution of OH [–] with Cl [–] for Boosting Ultraâ€Fast Redox Kinetics up to 500ÂmVÂs ^{â^'1} in Supercapacitors. Advanced Functional Materials, 2022, 32, .	14.9	18
5	Enhanced pseudo-capacitance and rate performance of amorphous MnO2 for supercapacitor by high Na doping and structural water content. Journal of Power Sources, 2022, 523, 231032.	7.8	27
6	Template-directed synthesis of pomegranate-shaped zinc oxide@zeolitic imidazolate framework for visible light photocatalytic degradation of tetracycline. Chemosphere, 2022, 294, 133782.	8.2	15
7	Ultrafast pore-tailoring of dense microporous carbon for high volumetric performance supercapacitors in organic electrolyte. Carbon, 2022, 191, 19-27.	10.3	64
8	A Nanostructured Moistureâ€Absorbing Gel for Fast and Largeâ€Scale Passive Dehumidification. Advanced Materials, 2022, 34, e2200865.	21.0	36
9	A Mott–Schottky Heterogeneous Layer for Li–S Batteries: Enabling Both High Stability and Commercialâ€ S ulfur Utilization. Advanced Energy Materials, 2022, 12, .	19.5	74
10	A Nanostructured Moistureâ€Absorbing Gel for Fast and Largeâ€Scale Passive Dehumidification (Adv.) Tj ETQqO	00 _{1g} BT/	Overlock 10 1
11	Transparent and flexible structurally colored biological nanofiber films for visual gas detection. Matter, 2022, 5, 2813-2828.	10.0	11
12	Effect of ultramicropores and inner space of carbon materials on the capacitive sodium storage performance. Journal of Energy Chemistry, 2022, 73, 35-40.	12.9	1
13	Nitrogen-doped graphene ribbons/MoS2 with ultrafast electron and ion transport for high-rate Li-ion batteries. Chemical Engineering Journal, 2021, 408, 127269.	12.7	36
14	3D Carbon Frameworks for Ultrafast Charge/Discharge Rate Supercapacitors with High Energy-Power Density. Nano-Micro Letters, 2021, 13, 8.	27.0	64
15	Approaching the Theoretical Sodium Storage Capacity and Ultrahigh Rate of Layerâ€Expanded MoS ₂ by Interfacial Engineering on Nâ€Doped Graphene. Advanced Energy Materials, 2021, 11, 2002600.	19.5	65
16	Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting. Nano Energy, 2021, 80, 105569.	16.0	99
17	Large-surface-area activated carbon with high density by electrostatic densification for supercapacitor electrodes. Carbon, 2021, 175, 281-288.	10.3	91
18	Recent Developments of Transition Metal Compounds-Carbon Hybrid Electrodes for High Energy/Power Supercapacitors. Nano-Micro Letters, 2021, 13, 129.	27.0	75

#	Article	IF	CITATIONS
19	Advanced carbon materials with different spatial dimensions for supercapacitors. Nano Materials Science, 2021, 3, 241-267.	8.8	54
20	Polarity-induced precipitation of S/Li2S confined into N and S co-doped porous graphene layered matrix for lithium sulfur batteries. Carbon, 2021, 184, 544-553.	10.3	13
21	Strong oxidation induced quinone-rich dopamine polymerization onto porous carbons as ultrahigh-capacity organic cathode for sodium-ion batteries. Energy Storage Materials, 2021, 43, 120-129.	18.0	26
22	Weldable and flexible graphene ribbon@Ni fibers with ultrahigh length capacitance for all-solid-state supercapacitors. Chemical Engineering Journal, 2021, 426, 131361.	12.7	17
23	Covalent grafting of <i>p</i> -phenylenediamine molecules onto a "bubble-like―carbon surface for high performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2020, 8, 1767-1778.	10.3	51
24	Pt enhanced the photo-Fenton activity of ZnFe2O4/α-Fe2O3 heterostructure synthesized via one-step hydrothermal method. Journal of Colloid and Interface Science, 2020, 561, 793-800.	9.4	33
25	Compositing strategies to enhance the performance of chemiresistive CO2 gas sensors. Materials Science in Semiconductor Processing, 2020, 107, 104820.	4.0	54
26	In-situ growth of magnesium peroxide on the edge of magnesium oxide nanosheets: Ultrahigh photocatalytic efficiency based on synergistic catalysis. Journal of Colloid and Interface Science, 2020, 561, 257-264.	9.4	34
27	One-step synthesis of biomass derived O, N-codoped hierarchical porous carbon with high surface area for supercapacitors. Chinese Chemical Letters, 2020, 31, 2235-2238.	9.0	38
28	Highâ€efficiency utilization of carbon materials for supercapacitors. Nano Select, 2020, 1, 244-262.	3.7	27
29	Tin Nanodots Derived From Sn 2+ /Graphene Quantum Dot Complex as Pillars into Graphene Blocks for Ultrafast and Ultrastable Sodiumâ€ion Storage. Small, 2020, 16, 2003557.	10.0	22
30	Toward the Design of Highâ€performance Supercapacitors by Prussian Blue, its Analogues and their Derivatives. Energy and Environmental Materials, 2020, 3, 323-345.	12.8	29
31	Sandwiching Sulfur into the Dents Between N, O Co-Doped Graphene Layered Blocks with Strong Physicochemical Confinements for Stable and High-Rate Li–S Batteries. Nano-Micro Letters, 2020, 12, 146.	27.0	23
32	Graphene Quantum Dot Reinforced Electrospun Carbon Nanofiber Fabrics with High Surface Area for Ultrahigh Rate Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 11669-11678.	8.0	67
33	Wood-Derived Carbon with Selectively Introduced Câ•O Groups toward Stable and High Capacity Anodes for Sodium Storage. ACS Applied Materials & Interfaces, 2020, 12, 27499-27507.	8.0	75
34	Application of Carbon-/Graphene Quantum Dots for Supercapacitors. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, 36, 1903052-0.	4.9	37
35	Overview of Supercapacitors. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, 36, 1907017-0.	4.9	12
36	Self-activation of nitrogen and sulfur dual-doping hierarchical porous carbons for asymmetric supercapacitors with high energy densities. Carbon, 2019, 153, 225-233.	10.3	98

#	Article	IF	CITATIONS
37	Woodâ€Derived Nanofibrillated Cellulose Hydrogel Filters for Fast and Efficient Separation of Nanoparticles. Advanced Sustainable Systems, 2019, 3, 1900063.	5.3	10
38	Ultra-small NiO nanoparticles anchored on nitrogen-doped carbon flowers through strong chemical bonding for high-performance lithium-ion batteries. Journal of Power Sources, 2019, 441, 227182.	7.8	39
39	Ultrasmall-sized SnS nanosheets vertically aligned on carbon microtubes for sodium-ion capacitors with high energy density. Journal of Materials Chemistry A, 2019, 7, 4047-4054.	10.3	57
40	Advanced Liâ€lon Batteries with High Rate, Stability, and Mass Loading Based on Graphene Ribbon Hybrid Networks. Chemistry - A European Journal, 2019, 25, 5022-5027.	3.3	8
41	Photo-triggered conversion of hydrophilic fluorescent biomimetic nanostructures for cell imaging. Chemical Communications, 2019, 55, 596-599.	4.1	6
42	Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon, 2019, 152, 134-143.	10.3	85
43	Lightweight, Flexible, Thermally-Stable, and Thermally-Insulating Aerogels Derived from Cotton Nanofibrillated Cellulose. ACS Sustainable Chemistry and Engineering, 2019, 7, 9202-9210.	6.7	52
44	Low-energy disinfection under natural light by magnetic Ag Mn1â^'Fe2O4 in the water: Efficiency and mechanism. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 336-345.	5.3	5
45	Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots. Journal of Materials Chemistry A, 2019, 7, 6021-6027.	10.3	145
46	Nickel hexacyanoferrate on graphene sheets for high-performance asymmetric supercapacitors in neutral aqueous electrolyte. Electrochimica Acta, 2019, 303, 40-48.	5.2	43
47	Effect of the solvents on the photocatalytic properties of ZnFe2O4 fabricated by solvothermal method. Materials Chemistry and Physics, 2019, 223, 758-761.	4.0	24
48	Densely pillared holey-graphene block with high-level nitrogen doping enabling ultra-high volumetric capacity for lithium ion storage. Carbon, 2019, 142, 327-336.	10.3	34
49	Catalytic ozonation of di-n-butyl phthalate degradation using manganese ferrite/reduced graphene oxide nanofiber as catalyst in the water. Journal of Colloid and Interface Science, 2018, 526, 347-355.	9.4	38
50	Molecular Diffusion–Driven Motion in 2D Graphene Film. Advanced Functional Materials, 2018, 28, 1707053.	14.9	9
51	Amorphous Red Phosphorus Embedded in Sandwiched Porous Carbon Enabling Superior Sodium Storage Performances. Small, 2018, 14, e1703472.	10.0	58
52	Biomass-derived carbon materials with structural diversities and their applications in energy storage. Science China Materials, 2018, 61, 133-158.	6.3	210
53	Robust Nanofibrillated Cellulose Hydro/Aerogels from Benign Solution/Solvent Exchange Treatment. ACS Sustainable Chemistry and Engineering, 2018, 6, 6624-6634.	6.7	41
54	Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chemical Society Reviews, 2018, 47, 2837-2872.	38.1	586

#	Article	IF	CITATIONS
55	Fe(CN) ₆ ^{3â^²} ion-modified MnO ₂ /graphene nanoribbons enabling high energy density asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 7649-7658.	10.3	60
56	Electrostatic interaction in electrospun nanofibers: Double-layer carbon protection of CoFe2O4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage. Nano Energy, 2018, 48, 238-247.	16.0	105
57	Fabrication of mesoporous magnesium oxide nanosheets using magnesium powder and their excellent adsorption of Ni (II). Journal of Colloid and Interface Science, 2018, 510, 69-76.	9.4	25
58	Space-confinement of MnO nanosheets in densely stacked graphene: Ultra-high volumetric capacity and rate performance for lithium-ion batteries. Energy Storage Materials, 2018, 12, 94-102.	18.0	74
59	Oxygen Clusters Distributed in Graphene with "Paddy Land―Structure: Ultrahigh Capacitance and Rate Performance for Supercapacitors. Advanced Functional Materials, 2018, 28, 1705258.	14.9	94
60	Fe(CN) ₆ ^{3â^'} ions confined into porous pillared-carbon nanosheets for high energy density supercapacitors. Journal of Materials Chemistry A, 2018, 6, 23885-23893.	10.3	14
61	Mesoporous single-crystalline MnO _x nanofibers@graphene for ultra-high rate and long-life lithium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 24756-24766.	10.3	24
62	Wrinkled Ultrathin Graphitic C ₃ N ₄ Nanosheets for Photocatalytic Degradation of Organic Wastewater. ACS Applied Nano Materials, 2018, 1, 6733-6741.	5.0	71
63	Polyaniline nanofibers confined into graphene oxide architecture for high-performance supercapacitors. Electrochimica Acta, 2018, 291, 234-241.	5.2	41
64	Ultramicroporous Carbons Puzzled by Graphene Quantum Dots: Integrated High Gravimetric, Volumetric, and Areal Capacitances for Supercapacitors. Advanced Functional Materials, 2018, 28, 1805898.	14.9	152
65	Edgeâ€Nitrogenâ€Rich Carbon Dots Pillared Graphene Blocks with Ultrahigh Volumetric/Gravimetric Capacities and Ultralong Life for Sodiumâ€ŀon Storage. Advanced Energy Materials, 2018, 8, 1802042.	19.5	107
66	In Situ Nanoreactors: Controllable Photoluminescent Carbonâ€Rich Polymer Nanodots Derived from Fatty Acid under Photoirradiation. Macromolecular Rapid Communications, 2018, 39, e1800152.	3.9	11
67	Multilayerâ€Folded Graphene Ribbon Film with Ultrahigh Areal Capacitance and High Rate Performance for Compressible Supercapacitors. Advanced Functional Materials, 2018, 28, 1800597.	14.9	149
68	Nitrogen-doped carbon-coated MnO nanoparticles anchored on interconnected graphene ribbons for high-performance lithium-ion batteries. Journal of Power Sources, 2018, 397, 325-333.	7.8	48
69	Functionalized graphene nanosheets decorated on carbon nanotubes networks for high performance supercapacitors. Journal of Power Sources, 2018, 398, 113-119.	7.8	125
70	Vertically Oriented Graphene Nanoribbon Fibers for High-Volumetric Energy Density All-Solid-State Asymmetric Supercapacitors. Small, 2017, 13, 1700371.	10.0	71
71	Ultra-small and highly crystallized ZnFe ₂ O ₄ nanoparticles within double graphene networks for super-long life lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 11188-11196.	10.3	55
72	Ultra-high toughness all graphene fibers derived from synergetic effect of interconnected graphene ribbons and graphene sheets. Carbon, 2017, 120, 17-22.	10.3	47

#	Article	IF	CITATIONS
73	Chloro-benquinone Modified on Graphene Oxide as Metal-free Catalyst: Strong Promotion of Hydroxyl Radical and Generation of Ultra-Small Graphene Oxide. Scientific Reports, 2017, 7, 42643.	3.3	16
74	Spatial Charge Storage within Honeycombâ€Carbon Frameworks for Ultrafast Supercapacitors with High Energy and Power Densities. Advanced Energy Materials, 2017, 7, 1700668.	19.5	96
75	Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. Journal of Materials Chemistry A, 2017, 5, 23085-23093.	10.3	158
76	Fast charge rate supercapacitors based on nitrogen-doped aligned carbon nanosheet networks. Electrochimica Acta, 2017, 251, 91-98.	5.2	24
77	Multifunctional Bionanocomposite Foams with a Chitosan Matrix Reinforced by Nanofibrillated Cellulose. ChemNanoMat, 2017, 3, 98-108.	2.8	37
78	Reply to comment on "Methods of calculating the volumetric performance of a supercapacitor― Energy Storage Materials, 2016, 4, 156-157.	18.0	1
79	Fabrication of MgO nanosheets for removal of Ni (â;) via hydrothermal and calcination method without surfactant. Materials Chemistry and Physics, 2016, 183, 499-505.	4.0	9
80	"Brick-and-mortar―sandwiched porous carbon building constructed by metal-organic framework and graphene: Ultrafast charge/discharge rate up to 2 V sâ°'1 for supercapacitors. Nano Energy, 2016, 30, 84-92.	16.0	84
81	High Volumetric Energy Density Asymmetric Supercapacitors Based on Wellâ€Balanced Graphene and Grapheneâ€MnO ₂ Electrodes with Densely Stacked Architectures. Small, 2016, 12, 5217-5227.	10.0	112
82	Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 13589-13602.	10.3	199
83	Improvement of g-C3N4 photocatalytic properties using the Hummers method. Journal of Colloid and Interface Science, 2016, 479, 1-6.	9.4	74
84	Construction of nitrogen-doped porous carbon buildings using interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors. Journal of Materials Chemistry A, 2016, 4, 11388-11396.	10.3	151
85	Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy, 2016, 19, 165-175.	16.0	1,088
86	Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy and Environmental Science, 2016, 9, 729-762.	30.8	1,037
87	Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors. Journal of Power Sources, 2016, 307, 190-198.	7.8	112
88	Bubbleâ€Decorated Honeycomb‣ike Graphene Film as Ultrahigh Sensitivity Pressure Sensors. Advanced Functional Materials, 2015, 25, 6545-6551.	14.9	189
89	Photocatalyst Interface Engineering: Spatially Confined Growth of ZnFe ₂ O ₄ within Graphene Networks as Excellent Visibleâ€Lightâ€Driven Photocatalysts. Advanced Functional Materials, 2015, 25, 7080-7087.	14.9	134
90	A Highly Sensitive and Selective Hydrogen Peroxide Biosensor Based on Gold Nanoparticles and Three-Dimensional Porous Carbonized Chicken Eggshell Membrane. PLoS ONE, 2015, 10, e0130156.	2.5	20

#	Article	IF	CITATIONS
91	Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon, 2015, 93, 412-420.	10.3	281
92	Energy Storage: Dual Support System Ensuring Porous Co–Al Hydroxide Nanosheets with Ultrahigh Rate Performance and High Energy Density for Supercapacitors (Adv. Funct. Mater. 11/2015). Advanced Functional Materials, 2015, 25, 1763-1763.	14.9	0
93	Densely stacked bubble-pillared graphene blocks for high volumetric performance supercapacitors. Energy Storage Materials, 2015, 1, 42-50.	18.0	40
94	Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy, 2015, 12, 141-151.	16.0	540
95	Dual Support System Ensuring Porous Co–Al Hydroxide Nanosheets with Ultrahigh Rate Performance and High Energy Density for Supercapacitors. Advanced Functional Materials, 2015, 25, 1648-1655.	14.9	248
96	Approaching the Downsizing Limit of Silicon for Surfaceâ€Controlled Lithium Storage. Advanced Materials, 2015, 27, 1526-1532.	21.0	110
97	Tuning sulfur doping in graphene for highly sensitive dopamine biosensors. Carbon, 2015, 86, 197-206.	10.3	82
98	From flour to honeycomb-like carbon foam: Carbon makes room for high energy density supercapacitors. Nano Energy, 2015, 13, 527-536.	16.0	247
99	Functionalized three-dimensional graphene networks for high performance supercapacitors. Carbon, 2015, 92, 26-30.	10.3	78
100	Improved visible-light photocatalytic properties of ZnFe2O4 synthesized via sol-gel method combined with a microwave treatment. Chemical Research in Chinese Universities, 2015, 31, 439-442.	2.6	4
101	Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors. Journal of Power Sources, 2015, 300, 309-317.	7.8	129
102	Synthesis of NiFe2O4 nanowires with NiO nanosheet as precursor via a topochemical solid state method. Chemical Research in Chinese Universities, 2015, 31, 885-889.	2.6	3
103	Functional Pillared Graphene Frameworks for Ultrahigh Volumetric Performance Supercapacitors. Advanced Energy Materials, 2015, 5, 1500771.	19.5	184
104	High-performance aqueous asymmetric supercapacitor based on spinel LiMn2O4 and nitrogen-doped graphene/porous carbon composite. Electrochimica Acta, 2015, 180, 287-294.	5.2	50
105	Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy, 2015, 11, 471-480.	16.0	219
106	Synthesis of magnetic ZnO/ZnFe 2 O 4 by a microwave combustion method, and its high rate of adsorption of methylene blue. Journal of Colloid and Interface Science, 2015, 438, 318-322.	9.4	58
107	Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M = Co, Cu, Mn,) Tj ETQq1 1	0.784314 20.2	rgBT /Overic
108	Synthesis of high surface area, mesoporous MgO nanosheets with excellent adsorption capability for Ni(II) via a distillation treating. Journal of Colloid and Interface Science, 2015, 438, 259-267.	9.4	57

#	Article	IF	CITATIONS
109	Nickel sulfide/graphene/carbon nanotube composites as electrode material for the supercapacitor application in the sea flashing signal system. Journal of Marine Science and Application, 2014, 13, 462-466.	1.7	24
110	Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors. Journal of Power Sources, 2014, 247, 197-203.	7.8	135
111	Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Advanced Energy Materials, 2014, 4, 1300816.	19.5	1,727
112	Interconnected Frameworks with a Sandwiched Porous Carbon Layer/Graphene Hybrids for Supercapacitors with High Gravimetric and Volumetric Performances. Advanced Energy Materials, 2014, 4, 1400500.	19.5	234
113	Template-Assisted Low Temperature Synthesis of Functionalized Graphene for Ultrahigh Volumetric Performance Supercapacitors. ACS Nano, 2014, 8, 4720-4729.	14.6	413
114	Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale, 2014, 6, 1922-1945.	5.6	613
115	Supercapacitors: Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities (Adv. Energy Mater. 4/2014). Advanced Energy Materials, 2014, 4, .	19.5	28
116	KOH self-templating synthesis of three-dimensional hierarchical porous carbon materials for high performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 14844.	10.3	156
117	Nitrogenâ€Doped Carbon Networks for High Energy Density Supercapacitors Derived from Polyaniline Coated Bacterial Cellulose. Advanced Functional Materials, 2014, 24, 3953-3961.	14.9	336
118	Enhancing the Li Storage Capacity and Initial Coulombic Efficiency for Porous Carbons by Sulfur Doping. ACS Applied Materials & Interfaces, 2014, 6, 15950-15958.	8.0	93
119	In-plane mesoporous graphene oxide nanosheet assembled membranes for molecular separation. RSC Advances, 2014, 4, 21425.	3.6	72
120	Preparation of zirconium oxy ion-imprinted particle for the selective separation of trace zirconium ion from water. Journal of Colloid and Interface Science, 2014, 431, 209-215.	9.4	7
121	High-performance asymmetric supercapacitors with lithium intercalation reaction using metal oxide-based composites as electrode materials. Journal of Materials Chemistry A, 2014, 2, 16678-16686.	10.3	106
122	Nitrogen-doped sandwich-like porous carbon nanosheets for high volumetric performance supercapacitors. Electrochimica Acta, 2014, 146, 548-555.	5.2	64
123	Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon, 2014, 67, 119-127.	10.3	585
124	Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy and Environmental Science, 2014, 7, 2025.	30.8	265
125	Al and Co co-doped α-Ni(OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors. Electrochimica Acta, 2014, 137, 352-358.	5.2	73
126	Supercapacitors Based on Graphene-Supported Iron Nanosheets as Negative Electrode Materials. ACS Nano, 2013, 7, 11325-11332.	14.6	180

#	Article	IF	CITATIONS
127	MgO-catalyzed growth of N-doped wrinkled carbon nanotubes. Carbon, 2013, 56, 38-44.	10.3	48
128	Interconnected porous and nitrogen-doped carbon network for supercapacitors with high rate capability and energy density. Electrochimica Acta, 2013, 114, 165-172.	5.2	38
129	One-step synthesis of biomass-derived porous carbon foam for high performance supercapacitors. Materials Letters, 2013, 101, 29-32.	2.6	53
130	In-situ hydrothermal crystallization Mg(OH)2 films on magnesium alloy AZ91 and their corrosion resistance properties. Materials Chemistry and Physics, 2013, 143, 322-329.	4.0	77
131	High density Co3O4 nanoparticles confined in a porous graphene nanomesh network driven by an electrochemical process: ultra-high capacity and rate performance for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 14023.	10.3	63
132	Chemical vapor deposition derived flexible graphene paper and its application as high performance anodes for lithium rechargeable batteries. Journal of Materials Chemistry A, 2013, 1, 408-414.	10.3	78
133	Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors. Carbon, 2013, 52, 209-218.	10.3	160
134	Facile and rapid synthesis of highly crumpled graphene sheets as high-performance electrodes for supercapacitors. RSC Advances, 2013, 3, 2566.	3.6	50
135	Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon, 2013, 60, 481-487.	10.3	201
136	Ferromagnetism in nanomesh graphene. Carbon, 2013, 51, 390-396.	10.3	52
137	Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon, 2013, 60, 558-561.	10.3	139
138	Three-dimensional hybrid materials of fish scale-like polyaniline nanosheet arrays on graphene oxide and carbon nanotube for high-performance ultracapacitors. Carbon, 2013, 54, 241-248.	10.3	95
139	MnO2–graphene hybrid as an alternative cathodic catalyst to platinum in microbial fuel cells. Journal of Power Sources, 2012, 216, 187-191.	7.8	147
140	Compressible aligned carbon nanotube/MnO2 as high-rate electrode materials for supercapacitors. Journal of Electroanalytical Chemistry, 2012, 684, 32-37.	3.8	24
141	Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. Journal of Materials Chemistry, 2012, 22, 11494.	6.7	261
142	High capacity gas storage in corrugated porous graphene with a specific surface area-lossless tightly stacking manner. Chemical Communications, 2012, 48, 6815.	4.1	79
143	Advanced Asymmetric Supercapacitors Based on Ni(OH) ₂ /Graphene and Porous Graphene Electrodes with High Energy Density. Advanced Functional Materials, 2012, 22, 2632-2641.	14.9	1,855
144	Templateâ€Directed Synthesis of Pillaredâ€Porous Carbon Nanosheet Architectures: Highâ€Performance Electrode Materials for Supercapacitors. Advanced Energy Materials, 2012, 2, 419-424.	19.5	267

#	Article	IF	CITATIONS
145	Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon, 2012, 50, 1699-1703.	10.3	252
146	High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon, 2012, 50, 2179-2188.	10.3	397
147	One step synthesis of nanoparticles of cobalt in a graphitic shell anchored on graphene sheets. Carbon, 2012, 50, 2356-2358.	10.3	7
148	One-step synthesis of a graphene-carbon nanotube hybrid decorated by magnetic nanoparticles. Carbon, 2012, 50, 2764-2771.	10.3	64
149	Facile Synthesis of Graphene Nanosheets <i>via</i> Fe Reduction of Exfoliated Graphite Oxide. ACS Nano, 2011, 5, 191-198.	14.6	818
150	Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chemical Communications, 2011, 47, 5976.	4.1	339
151	Nanographene-Constructed Carbon Nanofibers Grown on Graphene Sheets by Chemical Vapor Deposition: High-Performance Anode Materials for Lithium Ion Batteries. ACS Nano, 2011, 5, 2787-2794.	14.6	277
152	Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Materials Research Bulletin, 2011, 46, 315-318.	5.2	209
153	Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater. Chemical Engineering Journal, 2011, 175, 1-7.	12.7	184
154	Microspheres composed of multilayer graphene as anode material for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2011, 653, 45-49.	3.8	17
155	Asymmetric Supercapacitors Based on Graphene/MnO ₂ and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Advanced Functional Materials, 2011, 21, 2366-2375.	14.9	1,827
156	Characteristics and electrochemical performances of supercapacitors using double-walled carbon nanotube/Ĩ´-MnO2 hybrid material electrodes. Journal of Electroanalytical Chemistry, 2011, 659, 191-195.	3.8	34
157	Magnetic and high rate adsorption properties of porous Mn1â^'Zn Fe2O4 (0 ⩽x⩽ 0.8) adsorbents. Journa Colloid and Interface Science, 2011, 353, 524-529.	of 9.4	72
158	Synthesis of 3D porous ferromagnetic NiFe2O4 and using as novel adsorbent to treat wastewater. Journal of Colloid and Interface Science, 2011, 362, 477-485.	9.4	67
159	Effect of chemical modification of graphite nanoplatelets on electrochemical performance of MnO2 electrodes. Journal of Materials Science: Materials in Electronics, 2010, 21, 619-624.	2.2	8
160	Preparation and electrochemical properties of lamellar MnO2 for supercapacitors. Materials Research Bulletin, 2010, 45, 210-215.	5.2	91
161	A Threeâ€Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors. Advanced Materials, 2010, 22, 3723-3728.	21.0	1,182
162	Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. Journal of Power Sources, 2010, 195, 3041-3045.	7.8	540

#	Article	IF	CITATIONS
163	A high-performance carbon derived from polyaniline for supercapacitors. Electrochemistry Communications, 2010, 12, 1279-1282.	4.7	98
164	Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochimica Acta, 2010, 55, 6973-6978.	5.2	462
165	Synthesis and adsorption properties of spongelike porous MnFe2O4. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 363, 1-7.	4.7	79
166	Super resilience of a compacted mixture of natural graphite and agglomerated carbon nanotubes under cyclic compression. Carbon, 2010, 48, 309-312.	10.3	6
167	Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon, 2010, 48, 487-493.	10.3	999
168	An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon, 2010, 48, 1686-1689.	10.3	557
169	Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon, 2010, 48, 1731-1737.	10.3	534
170	Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon, 2010, 48, 3825-3833.	10.3	1,272
171	Oil sorption and recovery by using vertically aligned carbon nanotubes. Carbon, 2010, 48, 4197-4200.	10.3	44
172	The synergy of a three filler combination in the conductivity of epoxy composites. Materials Letters, 2010, 64, 2376-2379.	2.6	63
173	Dispersibility and stability improvement of graphite nanoplatelets in organic solvent by assistance of dispersant and resin. Materials Research Bulletin, 2009, 44, 977-983.	5.2	8
174	Movement-induced voltage properties of stable graphite nanoplatelet suspensions. Materials Letters, 2009, 63, 1608-1610.	2.6	2
175	Temperature dependence of the conductivity behavior of graphite nanoplateletâ€filled epoxy resin composites. Journal of Applied Polymer Science, 2009, 113, 1515-1519.	2.6	25
176	Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. Journal of Power Sources, 2009, 194, 1202-1207.	7.8	358
177	Effect of carbon black on electrical property of graphite nanoplatelets/epoxy resin composites. Polymer Engineering and Science, 2009, 49, 2041-2045.	3.1	43
178	A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon, 2009, 47, 337-339.	10.3	114
179	Preparation of graphene nanosheet/polymer composites using in situ reduction–extractive dispersion. Carbon, 2009, 47, 2296-2299.	10.3	178
180	Preparation of exfoliated graphite containing manganese oxides with high electrochemical capacitance by microwave irradiation. Carbon, 2009, 47, 3371-3374.	10.3	25

#	Article	IF	CITATIONS
181	Preparation and electrochemical characteristics of manganese dioxide/graphite nanoplatelet composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 151, 174-178.	3.5	47
182	The effect of carbon nanotubes microstructures on reinforcing properties of SWNTs/alumina composite. Materials Research Bulletin, 2008, 43, 2806-2809.	5.2	31
183	A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness. Materials Letters, 2008, 62, 641-644.	2.6	112
184	Preparation and characteristics of nanostructured MnO2/MWCNTs using microwave irradiation method. Materials Letters, 2008, 62, 3345-3348.	2.6	24
185	Preparation of a carbon nanotube film by ink-jet printing. Carbon, 2007, 45, 2712-2716.	10.3	43
186	Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 132, 85-89.	3.5	306
187	Toughening and reinforcing alumina matrix composite with single-wall carbon nanotubes. Applied Physics Letters, 2006, 89, 121910.	3.3	82
188	Fabrication and characterization of multi-walled carbon nanotubes-based ink. Journal of Materials Science, 2005, 40, 5075-5077.	3.7	53
189	New route for preparation of SiC-B4C/C composite with excellent oxidation resistance up to 1400°C. Journal of Materials Science Letters, 2003, 22, 213-215.	0.5	7
190	Oxidation behavior of fine-grained SiC–B4C/C composites up to 1400 °C. Carbon, 2003, 41, 429-436.	10.3	20
191	Preparation of fine-grain carbon–ceramic materials by a ball milling dispersion method. Carbon, 2003, 41, 1316-1319.	10.3	5
192	The preparation of fine-grain doped graphite and its properties. Journal of Nuclear Materials, 2002, 305, 77-82.	2.7	13