James A Brock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3056662/publications.pdf

Version: 2024-02-01

186265 189892 2,678 78 28 50 citations g-index h-index papers 80 80 80 2030 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Zinc drives vasorelaxation by acting in sensory nerves, endothelium and smooth muscle. Nature Communications, 2021, 12, 3296.	12.8	25
2	Early urinary tract infection after spinal cord injury: a retrospective inpatient cohort study. Spinal Cord, 2020, 58, 25-34.	1.9	10
3	Reply to Letter re: "Optimal Bladder Management Following Spinal Cord Injury: Evidence, Practice and a Cooperative Approach Driving Future Directions in Australia― Archives of Physical Medicine and Rehabilitation, 2019, 100, 1793-1794.	0.9	0
4	The Effects of Diabetes and High-Fat Diet on Polymodal Nociceptor and Cold Thermoreceptor Nerve Terminal Endings in the Corneal Epithelium., 2019, 60, 209.		14
5	Changes in sympathetic neurovascular function following spinal cord injury. Autonomic Neuroscience: Basic and Clinical, 2018, 209, 25-36.	2.8	10
6	Optimal Bladder Management Following Spinal Cord Injury: Evidence, Practice and a Cooperative Approach Driving Future Directions in Australia. Archives of Physical Medicine and Rehabilitation, 2018, 99, 2118-2121.	0.9	9
7	The neurochemistry and morphology of functionally identified corneal polymodal nociceptors and cold thermoreceptors. PLoS ONE, 2018, 13, e0195108.	2.5	31
8	TFOS DEWS II pain and sensation report. Ocular Surface, 2017, 15, 404-437.	4.4	437
9	Spinal cord thermosensitivity: An afferent phenomenon?. Temperature, 2016, 3, 232-239.	3.0	12
10	Transient receptor potential cation channel subfamily ν member 1 expressing corneal sensory neurons can be subdivided into at least three subpopulations. Frontiers in Neuroanatomy, 2015, 9, 71.	1.7	69
11	Spinal cord injury increases the reactivity of rat tail artery to angiotensin II. Frontiers in Neuroscience, 2015, 8, 435.	2.8	10
12	Angiotensin II increases nerve-evoked contractions in mouse tail artery by a T-type Ca2+ channel-dependent mechanism. European Journal of Pharmacology, 2015, 761, 11-18.	3.5	1
13	Analysis of the ghrelin receptor-independent vascular actions of ulimorelin. European Journal of Pharmacology, 2015, 752, 34-39.	3 . 5	7
14	Increased peripherin in sympathetic axons innervating plantar metatarsal arteries in STZ-induced type I diabetic rats. Frontiers in Neuroscience, 2014, 8, 99.	2.8	3
15	Piezo2 expression in corneal afferent neurons. Journal of Comparative Neurology, 2014, 522, 2967-2979.	1.6	63
16	The mechanism of enhanced defecation caused by the ghrelin receptor agonist, ulimorelin. Neurogastroenterology and Motility, 2014, 26, 264-271.	3.0	31
17	Hypotensive effects of ghrelin receptor agonists mediated through a novel receptor. British Journal of Pharmacology, 2014, 171, 1275-1286.	5.4	17
18	Modified Cytoplasmic Ca2+ Sequestration Contributes to Spinal Cord Injury-Induced Augmentation of Nerve-Evoked Contractions in the Rat Tail Artery. PLoS ONE, 2014, 9, e111804.	2.5	2

#	Article	IF	CITATIONS
19	Removal of half the sympathetic innervation does not reduce vasoconstrictor responses in rat tail artery. Journal of Physiology, 2013, 591, 2867-2884.	2.9	4
20	Streptozotocin-induced diabetes differentially affects sympathetic innervation and control of plantar metatarsal and mesenteric arteries in the rat. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H215-H228.	3.2	7
21	Sensory and sympathetic innervation of the mouse and guinea pig corneal epithelium. Journal of Comparative Neurology, 2013, 521, 877-893.	1.6	70
22	Hydrogen peroxide increases nerve-evoked contractions in mouse tail artery by an endothelium-dependent mechanism. European Journal of Pharmacology, 2013, 698, 362-369.	3 . 5	1
23	Prominent contribution of L-type Ca2+ channels to cutaneous neurovascular transmission that is revealed after spinal cord injury augments vasoconstriction. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H752-H762.	3.2	12
24	Sites of action of ghrelin receptor ligands in cardiovascular control. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1011-H1021.	3.2	41
25	Identification of neurons that express ghrelin receptors in autonomic pathways originating from the spinal cord. Cell and Tissue Research, 2012, 348, 397-405.	2.9	14
26	Two mechanisms underlie the slow noradrenergic depolarization in the rat tail artery in vitro. Autonomic Neuroscience: Basic and Clinical, 2011, 159, 45-50.	2.8	1
27	Stimulation of defecation in spinal cord-injured rats by a centrally acting ghrelin receptor agonist. Spinal Cord, 2011, 49, 1036-1041.	1.9	32
28	Damaging effects of ischemia/reperfusion on intestinal muscle. Cell and Tissue Research, 2011, 343, 411-419.	2.9	34
29	Ghrelin receptors are expressed by distal tubules of the mouse kidney. Cell and Tissue Research, 2011, 346, 135-139.	2.9	18
30	Nerve-Evoked Constriction of Rat Tail Veins Is Potentiated and Venous Diameter Is Reduced after Chronic Spinal Cord Transection. Journal of Neurotrauma, 2011, 28, 821-829.	3.4	5
31	Slow and incomplete sympathetic reinnervation of rat tail artery restores the amplitude of nerve-evoked contractions provided a perivascular plexus is present. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H541-H554.	3.2	8
32	Characterization of Na _V 1.6â€mediated Na ⁺ currents in smooth muscle cells isolated from mouse vas deferens. Journal of Cellular Physiology, 2010, 223, 234-243.	4.1	9
33	Transient supersensitivity to αâ€adrenoceptor agonists, and distinct hyperâ€reactivity to vasopressin and angiotensin II after denervation of rat tail artery. British Journal of Pharmacology, 2010, 159, 142-153.	5.4	21
34	Evidence for functional ghrelin receptors on parasympathetic preganglionic neurons of micturition control pathways in the rat. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 926-932.	1.9	16
35	Sympathetic Vasoconstriction Is Potentiated in Arteries Caudal but Not Rostral to a Spinal Cord Transection in Rats. Journal of Neurotrauma, 2010, 27, 2077-2089.	3 . 4	21
36	Sea anemone â€~sting' isolates IB4â€negative sensory neurones. Journal of Physiology, 2010, 588, 11-11.	2.9	2

#	Article	IF	Citations
37	Converting cold into pain. Experimental Brain Research, 2009, 196, 13-30.	1.5	99
38	Action potential initiation in the peripheral terminals of coldâ€sensitive neurones innervating the guineaâ€pig cornea. Journal of Physiology, 2009, 587, 1249-1264.	2.9	31
39	HIGHLIGHTS IN BASIC AUTONOMIC NEUROSCIENCES. Autonomic Neuroscience: Basic and Clinical, 2009, 150, 1-4.	2.8	0
40	Determinants of thermal pain thresholds in normal subjects. Clinical Neurophysiology, 2008, 119, 2389-2395.	1.5	77
41	Postnatal androgen deprivation dissociates the development of smooth muscle innervation from functional neurotransmission in mouse vas deferens. Journal of Physiology, 2007, 581, 665-678.	2.9	11
42	Inhibition of KATPchannels in the rat tail artery by neurally released noradrenaline acting on postjunctional $\hat{l}\pm 2$ -adrenoceptors. Journal of Physiology, 2007, 581, 757-765.	2.9	10
43	ATP is the predominant sympathetic neurotransmitter in rat mesenteric arteries at high pressure. Journal of Physiology, 2007, 582, 745-754.	2.9	57
44	Barium ions inhibit the dynamic response of guinea-pig corneal cold receptors to heating but not to cooling. Journal of Physiology, 2006, 575, 573-581.	2.9	11
45	Adaptations of peripheral vasoconstrictor pathways after spinal cord injury. Progress in Brain Research, 2006, 152, 289-297.	1.4	20
46	Enhanced neurally evoked responses and inhibition of norepinephrine reuptake in rat mesenteric arteries after spinal transection. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H398-H405.	3.2	45
47	Rho kinase inhibitors reduce neurally evoked contraction of the rat tail artery in vitro. British Journal of Pharmacology, 2005, 146, 854-861.	5.4	13
48	Selective modulation of noradrenaline release by $\hat{l}\pm 2$ -adrenoceptor blockade in the rat-tail artery in vitro. British Journal of Pharmacology, 2004, 142, 267-274.	5.4	22
49	Tail arteries from chronically spinalized rats have potentiated responses to nerve stimulationin vitro. Journal of Physiology, 2004, 556, 545-555.	2.9	51
50	Chronic decentralization potentiates neurovascular transmission in the isolated rat tail artery, mimicking the effects of spinal transection. Journal of Physiology, 2004, 561, 583-596.	2.9	41
51	Electrophysiological effects of activating the peptidergic primary afferent innervation of rat mesenteric arteries. British Journal of Pharmacology, 2003, 140, 231-238.	5.4	23
52	Effects of Heating and Cooling on Nerve Terminal Impulses Recorded from Cold-sensitive Receptors in the Guinea-pig Cornea. Journal of General Physiology, 2003, 121, 427-439.	1.9	52
53	The Effects of Polarizing Current on Nerve Terminal Impulses Recorded from Polymodal and Cold Receptors in the Guinea-pig Cornea. Journal of General Physiology, 2002, 120, 395-405.	1.9	39
54	Electrophysiology of Corneal Cold Receptor Nerve Terminals. Advances in Experimental Medicine and Biology, 2002, 508, 19-23.	1.6	4

#	Article	IF	CITATIONS
55	Effects of modulating Ca 2+ entry and activating prejunctional receptors on facilitation of excitatory junction potentials in the guinea-pig vas deferens in vitro. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 515-525.	3.0	6
56	Effects of a selective neuropeptide YY2 receptor antagonist, BIIE0246, on Y2 receptors at peripheral neuroeffector junctions. British Journal of Pharmacology, 2001, 132, 861-868.	5.4	62
57	Differences between nerve terminal impulses of polymodal nociceptors and cold sensory receptors of the guineaâ€pig cornea. Journal of Physiology, 2001, 533, 493-501.	2.9	71
58	Spontaneous release of large packets of noradrenaline from sympathetic nerve terminals in rat mesenteric arteries in vitro. British Journal of Pharmacology, 2000, 131, 1507-1511.	5.4	17
59	Potentiation by neostigmine of responses to vagal nerve stimulation in the sinus venosus of the toad. Autonomic Neuroscience: Basic and Clinical, 2000, 82, 109-114.	2.8	3
60	Effects of Ca2+ concentration and Ca2+ channel blockers on noradrenaline release and purinergic neuroeffector transmission in rat tail artery. British Journal of Pharmacology, 1999, 126, 11-18.	5.4	53
61	Effects of A1 -adenosine receptor antagonists on purinergic transmission in the guinea-pig vas deferens in vitro. British Journal of Pharmacology, 1999, 126, 1761-1768.	5.4	8
62	Electrochemical and electrophysiological characterization of neurotransmitter release from sympathetic nerves supplying rat mesenteric arteries. British Journal of Pharmacology, 1999, 128, 174-180.	5.4	39
63	Tetrodotoxin-resistant impulses in single nociceptor nerve terminals in guinea-pig cornea. Journal of Physiology, 1998, 512, 211-217.	2.9	186
64	\hat{l}^2 -Adrenoceptor mediated facilitation of noradrenaline and adenosine 5â€2-triphosphate release from sympathetic nerves supplying the rat tail artery. British Journal of Pharmacology, 1997, 120, 769-776.	5.4	21
65	Inhibition of purinergic transmission by prostaglandin E ₁ and E ₂ in the guineaâ€pig vas deferens: an electrophysiological study. British Journal of Pharmacology, 1996, 118, 776-782.	5.4	12
66	Prevention of high blood pressure by reducing sympathetic innervation in the spontaneously hypertensive rat. Journal of the Autonomic Nervous System, 1996, 61, 97-102.	1.9	27
67	Enhanced excitatory junction potentials in mesenteric arteries from spontaneously hypertensive rats. Pflugers Archiv European Journal of Physiology, 1995, 430, 901-908.	2.8	52
68	Electrical activity in rat tail artery during asynchronous activation of postganglionic nerve terminals by ciguatoxinâ€1. British Journal of Pharmacology, 1995, 116, 2213-2220.	5.4	23
69	Responses to sympathetic nerve stimulation of the sinus venosus of the toad Journal of Physiology, 1993, 461, 403-430.	2.9	13
70	Impulse conduction in sympathetic nerve terminals in the guinea-pig vas deferens and the role of the pelvic ganglia. Neuroscience, 1992, 47, 185-196.	2.3	21
71	Evidence for specialized junctional receptors for adrenaline and acetylcholine in the sinus venosus of the toad. Journal of the Autonomic Nervous System, 1991, 33, 177-178.	1.9	0
72	?2-Adrenoceptor-mediated autoinhibition of sympathetic transmitter release in guinea-pig vas deferens studied by intracellular and focal extracellular recording of junction potentials and currents. Naunyn-Schmiedeberg's Archives of Pharmacology, 1990, 342, 45-52.	3.0	44

#	Article	IF	CITATION
73	Transmitter Release from Sympathetic Nerve Terminals on an Impulse-by-Impulse Basis and Presynaptic Receptors. Annals of the New York Academy of Sciences, 1990, 604, 176-187.	3.8	12
74	INHIBITION OF TRANSMITTER RELEASE FROM SYMPATHETIC NERVE ENDINGS BY ?-CONOTOXIN. Clinical and Experimental Pharmacology and Physiology, 1989, 16, 333-339.	1.9	45
75	Electrical activity at the sympathetic neuroeffector junction in the guinea-pig vas deferens Journal of Physiology, 1988, 399, 607-632.	2.9	130
76	Time course of transmitter action at the sympathetic neuroeffector junction in rodent vascular and non-vascular smooth muscle Journal of Physiology, 1988, 401, 657-670.	2.9	35
77	A quantitative assessment of pyrethroid-induced paraesthesia in the guinea-pig flank model. Toxicology Letters, 1987, 36, 1-7.	0.8	20
78	Relationship between the nerve action potential and transmitter release from sympathetic postganglionic nerve terminals. Nature, 1987, 326, 605-607.	27.8	105