Chris Glembotski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3056320/publications.pdf

Version: 2024-02-01

95 papers 7,746 citations

54 h-index 86 g-index

98 all docs 98 docs citations 98 times ranked 7591 citing authors

#	Article	IF	Citations
1	The peroxisomal enzyme, FAR1, is induced during ER stress in an ATF6-dependent manner in cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1813-H1821.	3.2	8
2	Optimizing Adeno-Associated Virus Serotype 9 for Studies of Cardiac Chamber–Specific Gene Regulation. Circulation, 2021, 143, 2025-2027.	1.6	5
3	Reactive Oxygen Species (ROS)-Activatable Prodrug for Selective Activation of ATF6 after Ischemia/Reperfusion Injury. ACS Medicinal Chemistry Letters, 2020, 11, 292-297.	2.8	7
4	Proteomic analysis of the cardiac myocyte secretome reveals extracellular protective functions for the ER stress response. Journal of Molecular and Cellular Cardiology, 2020, 143, 132-144.	1.9	14
5	Designing Novel Therapies to Mend Broken Hearts: ATF6 and Cardiac Proteostasis. Cells, 2020, 9, 602.	4.1	7
6	Sledgehammer to Scalpel: Broad Challenges to the Heart and Other Tissues Yield Specific Cellular Responses via Transcriptional Regulation of the ER-Stress Master Regulator ATF6α. International Journal of Molecular Sciences, 2020, 21, 1134.	4.1	7
7	The ER Unfolded Protein Response Effector, ATF6, Reduces Cardiac Fibrosis and Decreases Activation of Cardiac Fibroblasts. International Journal of Molecular Sciences, 2020, 21, 1373.	4.1	16
8	Mesencephalic astrocyte–derived neurotrophic factor is an ER-resident chaperone that protects against reductive stress in the heart. Journal of Biological Chemistry, 2020, 295, 7566-7583.	3.4	27
9	ATF6 as a Nodal Regulator of Proteostasis in the Heart. Frontiers in Physiology, 2020, 11, 267.	2.8	23
10	Simultaneous Isolation and Culture of Atrial Myocytes, Ventricular Myocytes, and Non-Myocytes from an Adult Mouse Heart. Journal of Visualized Experiments, 2020, , .	0.3	4
11	Proteostasis and Beyond: ATF6 in Ischemic Disease. Trends in Molecular Medicine, 2019, 25, 538-550.	6.7	66
12	Unfolding the Roles of Mitochondria as Therapeutic Targets for Heart Disease. Journal of the American College of Cardiology, 2019, 73, 1807-1810.	2.8	7
13	Physiological signaling in the absence of amidated peptides. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19774-19776.	7.1	1
14	Pharmacologic ATF6 activation confers global protection in widespread disease models by reprograming cellular proteostasis. Nature Communications, 2019, 10, 187.	12.8	140
15	ATF6 Regulates Cardiac Hypertrophy by Transcriptional Induction of the mTORC1 Activator, Rheb. Circulation Research, 2019, 124, 79-93.	4.5	80
16	Integrating ER and Mitochondrial Proteostasis in the Healthy and Diseased Heart. Frontiers in Cardiovascular Medicine, 2019, 6, 193.	2.4	18
17	Pharmacologic ATF6 activating compounds are metabolically activated to selectively modify endoplasmic reticulum proteins. ELife, 2018, 7, .	6.0	85
18	Activation of the ATF6 branch of the unfolded protein response in neurons improves stroke outcome. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1069-1079.	4.3	75

#	Article	IF	CITATIONS
19	CaMKIIδ subtypes differentially regulate infarct formation following ex vivo myocardial ischemia/reperfusion through NF-IB and TNF-I±. Journal of Molecular and Cellular Cardiology, 2017, 103, 48-55.	1.9	62
20	Expanding the Paracrine Hypothesis of Stem Cell–Mediated Repair in the Heart. Circulation Research, 2017, 120, 772-774.	4.5	21
21	ATF6 Decreases Myocardial Ischemia/Reperfusion Damage and Links ER Stress and Oxidative Stress Signaling Pathways in the Heart. Circulation Research, 2017, 120, 862-875.	4.5	228
22	S100A4 protects the myocardium against ischemic stress. Journal of Molecular and Cellular Cardiology, 2016, 100, 54-63.	1.9	38
23	Junctophilin-2 gene therapy rescues heart failure by normalizing RyR2-mediated Ca2+ release. International Journal of Cardiology, 2016, 225, 371-380.	1.7	73
24	Breaking Down the COP9 Signalsome in the Heart. Circulation Research, 2015, 117, 914-916.	4.5	2
25	Hrd1 and ER-Associated Protein Degradation, ERAD, Are Critical Elements of the Adaptive ER Stress Response in Cardiac Myocytes. Circulation Research, 2015, 117, 536-546.	4.5	89
26	PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity. EMBO Molecular Medicine, 2014, 6, 57-65.	6.9	68
27	Finding the Missing Link Between the Unfolded Protein Response and O-GlcNAcylation in the Heart. Circulation Research, 2014, 115, 546-548.	4.5	9
28	Roles for ATF6 and the sarco/endoplasmic reticulum protein quality control system in the heart. Journal of Molecular and Cellular Cardiology, 2014, 71, 11-15.	1,9	66
29	Mechanistic Target of Rapamycin Complex 2 Protects the Heart From Ischemic Damage. Circulation, 2013, 128, 2132-2144.	1.6	97
30	New concepts of endoplasmic reticulum function in the heart: Programmed to conserve. Journal of Molecular and Cellular Cardiology, 2013, 55, 85-91.	1,9	73
31	Classic Studies of Cultured Cardiac Myocyte Hypertrophy. Circulation Research, 2013, 113, 1112-1116.	4.5	8
32	ATF6 and Thrombospondin 4. Circulation Research, 2013, 112, 9-12.	4.5	17
33	Pathological hypertrophy amelioration by PRAS40-mediated inhibition of mTORC1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12661-12666.	7.1	100
34	Regulation of Cardiac Hypertrophic Signaling by Prolyl Isomerase Pin1. Circulation Research, 2013, 112, 1244-1252.	4.5	46
35	Clarifying the Cardiac Proteasome Paradox. Circulation Research, 2012, 111, 509-512.	4.5	9
36	Roles for the Sarco-/Endoplasmic Reticulum in Cardiac Myocyte Contraction, Protein Synthesis, and Protein Quality Control. Physiology, 2012, 27, 343-350.	3.1	34

#	Article	IF	CITATIONS
37	Mesencephalic Astrocyte-derived Neurotrophic Factor Protects the Heart from Ischemic Damage and Is Selectively Secreted upon Sarco/endoplasmic Reticulum Calcium Depletion. Journal of Biological Chemistry, 2012, 287, 25893-25904.	3.4	178
38	Limitation of individual folding resources in the ER leads to outcomes distinct from the unfolded protein response. Journal of Cell Science, 2012, 125, 4865-75.	2.0	31
39	Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response. Journal of Molecular and Cellular Cardiology, 2012, 52, 1176-1182.	1.9	82
40	Protein disulfide isomerase-associated 6 is an ATF6-inducible ER stress response protein that protects cardiac myocytes from ischemia/reperfusion-mediated cell death. Journal of Molecular and Cellular Cardiology, 2012, 53, 259-267.	1.9	84
41	Functions for the cardiomyokine, MANF, in cardioprotection, hypertrophy and heart failure. Journal of Molecular and Cellular Cardiology, 2011, 51, 512-517.	1.9	67
42	Pim-1 Kinase Protects Mitochondrial Integrity in Cardiomyocytes. Circulation Research, 2010, 106, 1265-1274.	4.5	100
43	Roles for Endoplasmic Reticulum–Associated Degradation and the Novel Endoplasmic Reticulum Stress Response Gene Derlin-3 in the Ischemic Heart. Circulation Research, 2010, 106, 307-316.	4.5	83
44	Ischemia Activates the ATF6 Branch of the Endoplasmic Reticulum Stress Response. Journal of Biological Chemistry, 2009, 284, 29735-29745.	3.4	141
45	The ATF6-Met[67]Val Substitution Is Associated With Increased Plasma Cholesterol Levels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1322-1327.	2.4	21
46	The role of the unfolded protein response in the heart. Journal of Molecular and Cellular Cardiology, 2008, 44, 453-459.	1.9	130
47	Mesencephalic Astrocyte-Derived Neurotrophic Factor Is an Ischemia-Inducible Secreted Endoplasmic Reticulum Stress Response Protein in the Heart. Circulation Research, 2008, 103, 1249-1258.	4.5	149
48	Coordination of Growth and Endoplasmic Reticulum Stress Signaling by Regulator of Calcineurin 1 (RCAN1), a Novel ATF6-inducible Gene. Journal of Biological Chemistry, 2008, 283, 14012-14021.	3.4	90
49	Effects of the Isoform-specific Characteristics of ATF6 \hat{l} ± and ATF6 \hat{l} ² on Endoplasmic Reticulum Stress Response Gene Expression and Cell Viability. Journal of Biological Chemistry, 2007, 282, 22865-22878.	3.4	126
50	Endoplasmic Reticulum Stress in the Heart. Circulation Research, 2007, 101, 975-984.	4.5	202
51	Getting a G–RRP on regulated exocytosis in the heart. Journal of Cell Biology, 2007, 179, 371-373.	5.2	2
52	Pim-1 regulates cardiomyocyte survival downstream of Akt. Nature Medicine, 2007, 13, 1467-1475.	30.7	228
53	Activation of the Unfolded Protein Response in Infarcted Mouse Heart and Hypoxic Cultured Cardiac Myocytes. Circulation Research, 2006, 99, 275-282.	4.5	267
54	Endoplasmic Reticulum Stress Gene Induction and Protection From Ischemia/Reperfusion Injury in the Hearts of Transgenic Mice With a Tamoxifen-Regulated Form of ATF6. Circulation Research, 2006, 98, 1186-1193.	4.5	282

#	Article	IF	CITATIONS
55	Activation of p38 Has Opposing Effects on the Proliferation and Migration of Endothelial Cells. Journal of Biological Chemistry, 2005, 280, 20995-21003.	3.4	130
56	Overexpression of Mitogen-activated Protein Kinase Kinase 6 in the Heart Improves Functional Recovery from Ischemia in Vitro and Protects against Myocardial Infarction in Vivo. Journal of Biological Chemistry, 2005, 280, 669-676.	3.4	77
57	Atrial natriuretic peptide promotes cardiomyocyte survival by cGMP-dependent nuclear accumulation of zyxin and Akt. Journal of Clinical Investigation, 2005, 115, 2716-2730.	8.2	145
58	Roles for αB-crystallin and HSPB2 in protecting the myocardium from ischemia-reperfusion-induced damage in a KO mouse model. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H847-H855.	3.2	98
59	Opposing Roles for ATF6 \hat{l}^{\pm} and ATF6 \hat{l}^{2} in Endoplasmic Reticulum Stress Response Gene Induction. Journal of Biological Chemistry, 2004, 279, 21078-21084.	3.4	121
60	Factor Associated With Neutral Sphingomyelinase Activation and Its Role in Cardiac Cell Death. Circulation Research, 2003, 92, 589-591.	4.5	40
61	MAP Kinase Kinase 6–p38 MAP Kinase Signaling Cascade Regulates Cyclooxygenase-2 Expression in Cardiac Myocytes In Vitro and In Vivo. Circulation Research, 2003, 92, 757-764.	4.5	39
62	The MKK6–p38 MAPK pathway prolongs the cardiac contractile calcium transient, downregulates SERCA2, and activates NF-AT. Cardiovascular Research, 2003, 59, 46-56.	3.8	28
63	Mimicking Phosphorylation of $\hat{l}\pm B$ -Crystallin on Serine-59 Is Necessary and Sufficient to Provide Maximal Protection of Cardiac Myocytes From Apoptosis. Circulation Research, 2003, 92, 203-211.	4.5	143
64	Guanine Nucleotide Exchange Factor-like Factor (Rlf) Induces Gene Expression and Potentiates $\hat{l}\pm 1$ -Adrenergic Receptor-induced Transcriptional Responses in Neonatal Rat Ventricular Myocytes. Journal of Biological Chemistry, 2002, 277, 15286-15292.	3.4	10
65	Coordination of ATF6-mediated Transcription and ATF6 Degradation by a Domain That Is Shared with the Viral Transcription Factor, VP16. Journal of Biological Chemistry, 2002, 277, 20734-20739.	3.4	61
66	Sarco/endoplasmic Reticulum Calcium ATPase-2 Expression Is Regulated by ATF6 during the Endoplasmic Reticulum Stress Response. Journal of Biological Chemistry, 2001, 276, 48309-48317.	3.4	83
67	The Cytoprotective Effects of the Glycoprotein 130 Receptor-coupled Cytokine, Cardiotrophin-1, Require Activation of NF-κB. Journal of Biological Chemistry, 2001, 276, 37621-37629.	3.4	85
68	p38 MAPK Regulates Group IIa Phospholipase A2Expression in Interleukin- $1\hat{l}^2$ -stimulated Rat Neonatal Cardiomyocytes. Journal of Biological Chemistry, 2001, 276, 43842-43849.	3.4	18
69	Ras Reduces L-Type Calcium Channel Current in Cardiac Myocytes. Circulation Research, 2001, 88, 63-69.	4.5	26
70	Expression and characterization of Edg-1 receptors in rat cardiomyocytes. FEBS Journal, 2000, 267, 5679-5686.	0.2	46
71	αB-crystallin Gene Induction and Phosphorylation by MKK6-activated p38. Journal of Biological Chemistry, 2000, 275, 23825-23833.	3.4	138
72	p38 MAPK and NF-κB Collaborate to Induce Interleukin-6 Gene Expression and Release. Journal of Biological Chemistry, 2000, 275, 23814-23824.	3.4	311

#	Article	IF	CITATIONS
73	LPS-Induced TNF-αRelease from and Apoptosis in Rat Cardiomyocytes: Obligatory Role for CD14 in Mediating the LPS Response. Journal of Molecular and Cellular Cardiology, 1998, 30, 2761-2775.	1.9	147
74	MKK6 Activates Myocardial Cell NF-κB and Inhibits Apoptosis in a p38 Mitogen-activated Protein Kinase-dependent Manner. Journal of Biological Chemistry, 1998, 273, 8232-8239.	3.4	211
75	p38 Mitogen-activated Protein Kinase Mediates the Transcriptional Induction of the Atrial Natriuretic Factor Gene through a Serum Response Element. Journal of Biological Chemistry, 1998, 273, 20636-20643.	3.4	116
76	The Raf-MEK-ERK Cascade Represents a Common Pathway for Alteration of Intracellular Calcium by Ras and Protein Kinase C in Cardiac Myocytes. Journal of Biological Chemistry, 1998, 273, 21730-21735.	3.4	72
77	Collaborative Roles for c-Jun N-terminal Kinase, c-Jun, Serum Response Factor, and Sp1 in Calcium-regulated Myocardial Gene Expression. Journal of Biological Chemistry, 1997, 272, 24046-24053.	3.4	73
78	A Role for the p38 Mitogen-activated Protein Kinase Pathway in Myocardial Cell Growth, Sarcomeric Organization, and Cardiac-specific Gene Expression. Journal of Cell Biology, 1997, 139, 115-127.	5 . 2	294
79	Differential Effects of Protein Kinase C, Ras, and Raf-1 Kinase on the Induction of the Cardiac B-type Natriuretic Peptide Gene through a Critical Promoter-proximal M-CAT Element. Journal of Biological Chemistry, 1997, 272, 7464-7472.	3.4	54
80	Dissociation of p44 and p42 Mitogen-activated Protein Kinase Activation from Receptor-induced Hypertrophy in Neonatal Rat Ventricular Myocytes. Journal of Biological Chemistry, 1996, 271, 8452-8457.	3.4	160
81	Cardiotrophin-1 Activates a Distinct Form of Cardiac Muscle Cell Hypertrophy. Journal of Biological Chemistry, 1996, 271, 9535-9545.	3.4	344
82	TNFÎ \pm receptor expression in rat cardiac myocytes: TNFÎ \pm inhibition of L-type Ca2+current and Ca2+transients. FEBS Letters, 1995, 376, 24-30.	2.8	118
83	Involvement of Multiple cis Elements in Basal- and α-Adrenergic Agonist–Inducible Atrial Natriuretic Factor Transcription. Circulation Research, 1995, 77, 1060-1069.	4.5	97
84	Studies of ANF processing and secretion using a primary cardiocyte culture model. Canadian Journal of Physiology and Pharmacology, 1991, 69, 1525-1536.	1.4	17
85	Chromatographic characterization of vasoactive intestinal polypeptide in guinea pig and rhesus monkey eyes. Current Eye Research, 1990, 9, 287-291.	1.5	4
86	Biochemical studies of soluble atrial natriuretic peptide (ANP) receptors from rat olfactory bulb and vascular smooth muscle cells. Cellular and Molecular Neurobiology, 1989, 9, 57-73.	3.3	9
87	The Role of Ascorbic Acid in the Biosynthesis of the Neuroendocrine Peptides ?-MSH and TRH. Annals of the New York Academy of Sciences, 1987, 498, 54-62.	3.8	34
88	Characterization of the molecular forms of ANP released by perfused neonatal rat heart. Biochemical and Biophysical Research Communications, 1987, 146, 547-553.	2.1	11
89	Immunoactive atrial natriuretic peptide in the rat eye: Molecular forms in anterior uvea and retina. Biochemical and Biophysical Research Communications, 1986, 134, 1022-1028.	2.1	61
90	Acetylation of $\hat{l}\pm MSH$ and \hat{l}^2 -endorphin by rat neurointermediate pituitary secretory granule-associated acetyltransferase. Peptides, 1985, 6, 615-620.	2.4	10

#	Article	IF	CITATIONS
91	Molecular forms of immunoactive atrial natriuretic peptide released from cultured rat atrial myocytes. Biochemical and Biophysical Research Communications, 1985, 132, 1008-1017.	2.1	66
92	Molecular forms of immunoactive atrial natriuretic peptide in the rat hypothalamus and atrium. Biochemical and Biophysical Research Communications, 1985, 129, 671-678.	2.1	74
93	Further characterization of the peptidyl $\hat{l}\pm$ -amidating enzyme in rat anterior pituitary secretory granules. Archives of Biochemistry and Biophysics, 1985, 241, 673-683.	3.0	29
94	Bovine intermediate pituitary α-amidation enzyme: Preliminary characterization. Peptides, 1983, 4, 921-928.	2.4	62
95	Strategies for the biosynthesis of bioactive peptides. Trends in Neurosciences, 1983, 6, 229-235.	8.6	188