List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/305527/publications.pdf Version: 2024-02-01

		25034	37204
208	11,322	57	96
papers	citations	h-index	g-index
213	213	213	7795
all docs	docs citations	times ranked	citing authors

RENÃO ROV

#	Article	IF	CITATIONS
1	What is the Sugar Code?. ChemBioChem, 2022, 23, .	2.6	20
2	Practical non-enzymatic synthesis of propargyl sialyl-α-(2-3')-lactosamine trisaccharide using minimal protecting groups manipulation. Carbohydrate Research, 2022, 514, 108543.	2.3	1
3	Synthesis of exopolysaccharide-based organo-montmorillonite with improved affinity towards carbon dioxide and hydrophilic character. Comptes Rendus Chimie, 2022, 25, 217-225.	0.5	0
4	Optimized diffusion–convection compromise for reversible CO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow> <mml:mn>2</mml:mn> </mml:msub> capture on hydroxylated organo-montmorillonite. Comptes Rendus Chimie, 2022, 25, 27-38.</mml:math 	0.5	0
5	Aberrant glycosylation patterns on cancer cells: Therapeutic opportunities for glycodendrimers/metallodendrimers oncology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1659.	6.1	12
6	Neuraminidases 1 and 3 Trigger Atherosclerosis by Desialylating Lowâ€Density Lipoproteins and Increasing Their Uptake by Macrophages. Journal of the American Heart Association, 2021, 10, e018756.	3.7	29
7	Design, Synthetic Strategies, and Therapeutic Applications of Heterofunctional Glycodendrimers. Molecules, 2021, 26, 2428.	3.8	17
8	Host-guest chemistry of the sulfasalazine-β-cyclodextrin inclusion complex. Tetrahedron, 2021, 85, 132052.	1.9	9
9	Improving the Utility of a Dynorphin Peptide Analogue Using Mannosylated Glycoliposomes. International Journal of Molecular Sciences, 2021, 22, 7996.	4.1	4
10	Recent Development in the Design of Neoglycoliposomes Bearing Arborescent Architectures. Molecules, 2021, 26, 4281.	3.8	2
11	Recent development in the design of small â€~drug-like' and nanoscale glycomimetics against Escherichia coli infections. Drug Discovery Today, 2021, 26, 2124-2137.	6.4	10
12	Novel immunomodulatory properties of low dose cytarabine entrapped in a mannosylated cationic liposome. International Journal of Pharmaceutics, 2021, 606, 120849.	5.2	8
13	Synthesis of Galectin Inhibitors by Regioselective 3′-O-Sulfation of Vanillin Lactosides Obtained under Phase Transfer Catalysis. Molecules, 2021, 26, 115.	3.8	3
14	Clay-catalyzed ozonation of endocrine-disrupting compounds in solvent-free media – to better understand soil catalytic capacity. Dalton Transactions, 2020, 49, 16693-16706.	3.3	7
15	New insights in MgAl and MgFe-LDH affinity towards carbon dioxide – role of the hydrophilic character on CO2 retention strength. Applied Clay Science, 2020, 198, 105829.	5.2	14
16	The Global Emergency of Novel Coronavirus (SARS-CoV-2): An Update of the Current Status and Forecasting. International Journal of Environmental Research and Public Health, 2020, 17, 5648.	2.6	49
17	Mannosylated glycoliposomes for the delivery of a peptide kappa opioid receptor antagonist to the brain. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 290-296.	4.3	16
18	Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjugate Chemistry, 2020, 31, 2060-2071.	3.6	38

#	Article	IF	CITATIONS
19	Organic Dye Ozonation Catalyzed by Chemically Modified Montmorillonite K10– Role of Surface Basicity and Hydrophilic Character. Ozone: Science and Engineering, 2020, 42, 517-530.	2.5	12
20	Organically modified activated bentonites for the reversible capture of CO2. Microporous and Mesoporous Materials, 2019, 290, 109652.	4.4	7
21	Characterization and Protective Activity of Monoclonal Antibodies Directed against Streptococcus suis Serotype 2 Capsular Polysaccharide Obtained Using a Glycoconjugate. Pathogens, 2019, 8, 139.	2.8	10
22	Comparative Study of Aryl O-, C-, and S-Mannopyranosides as Potential Adhesion Inhibitors toward Uropathogenic E. coli FimH. Molecules, 2019, 24, 3566.	3.8	8
23	NiTiFe and NiTiZn LDHs with affinity for hydrogen– Role of the surface basicity. International Journal of Hydrogen Energy, 2019, 44, 7934-7942.	7.1	4
24	Exploration of biomedical dendrimer space based on in-vitro physicochemical parameters: key factor analysis (Part 1). Drug Discovery Today, 2019, 24, 1176-1183.	6.4	32
25	Exploration of biomedical dendrimer space based on in-vivo physicochemical parameters: Key factor analysis (Part 2). Drug Discovery Today, 2019, 24, 1184-1192.	6.4	29
26	Accelerated Synthesis of Surface Functionalized Mannosylated Dendrimers Built on Cyclotriphosphazene Core. MRS Advances, 2019, 4, 3187-3198.	0.9	0
27	CO2 capture by coal ash-derived zeolites- roles of the intrinsic basicity and hydrophilic character. Journal of Alloys and Compounds, 2019, 778, 866-877.	5.5	41
28	Acid-treated clay catalysts for organic dye ozonation – Thorough mineralization through optimum catalyst basicity and hydrophilic character. Journal of Hazardous Materials, 2019, 364, 356-366.	12.4	64
29	Intrinsic affinity of acid-activated bentonite towards hydrogen and carbon dioxide. International Journal of Hydrogen Energy, 2018, 43, 7964-7972.	7.1	25
30	Synthesis of Analogs of Trans-Fagaramide and Their Cytotoxic Activity. Pharmaceutical Chemistry Journal, 2018, 51, 995-1004.	0.8	1
31	Chicken GRIFIN: Structural characterization in crystals and in solution. Biochimie, 2018, 146, 127-138.	2.6	11
32	Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Advanced Drug Delivery Reviews, 2018, 136-137, 73-81.	13.7	47
33	Strengthening peptide-based drug activity with novel glyconanoparticle. PLoS ONE, 2018, 13, e0204472.	2.5	8
34	Development of Mannopyranoside Therapeutics against Adherent-Invasive <i>Escherichia coli</i> Infections. Accounts of Chemical Research, 2018, 51, 2937-2948.	15.6	23
35	Effect of Dendrimer Generation and Aglyconic Linkers on the Binding Properties of Mannosylated Dendrimers Prepared by a Combined Convergent and Onion Peel Approach. Molecules, 2018, 23, 1890.	3.8	18
36	Absolute quantitation of acetaminophenâ€modified human serum albumin in acute liver failure patients by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 1573-1582.	1.5	10

#	Article	IF	CITATIONS
37	"Onion peel―glycodendrimer syntheses using mixed triazine and cyclotriphosphazene scaffolds. Canadian Journal of Chemistry, 2017, 95, 975-983.	1.1	13
38	Metal organoclays with compacted structure for truly physical capture of hydrogen. Applied Surface Science, 2017, 398, 116-124.	6.1	17
39	Teaming up synthetic chemistry and histochemistry for activity screening in galectin-directed inhibitor design. Histochemistry and Cell Biology, 2017, 147, 285-301.	1.7	38
40	Catalytic ozonation of Orange-G through highly interactive contributions of hematite and SBA-16 – To better understand azo-dye oxidation in nature. Chemosphere, 2017, 168, 1648-1657.	8.2	42
41	Assessment of the intrinsic interactions of mesoporous silica with carbon dioxide. Research on Chemical Intermediates, 2017, 43, 3775-3786.	2.7	23
42	Montmorillonite-supported Pd0, Fe0, Cu0 and Ag0 nanoparticles: Properties and affinity towards CO2. Applied Surface Science, 2017, 402, 314-322.	6.1	21
43	Cu ⁰ -Loaded organo-montmorillonite with improved affinity towards hydrogen: an insight into matrix–metal and non-contact hydrogen–metal interactions. Physical Chemistry Chemical Physics, 2017, 19, 29333-29343.	2.8	14
44	Preparation of dendrimer polyol/mesoporous silica nanocomposite for reversible CO ₂ adsorption: Effect of pore size and polyol content. Separation Science and Technology, 2017, 52, 2421-2428.	2.5	18
45	Dendrimers: syntheses, toxicity, and applications toward catalysis, environmental sciences, and nanomedecine. Canadian Journal of Chemistry, 2017, 95, v-vii.	1.1	6
46	Heterolayered hybrid dendrimers with optimized sugar head groups for enhancing carbohydrate–protein interactions. Polymer Chemistry, 2017, 8, 5354-5366.	3.9	22
47	Aminooxylated Carbohydrates: Synthesis and Applications. Chemical Reviews, 2017, 117, 9839-9873.	47.7	24
48	Improved carbon dioxide storage over clay-supported perhydroxylated glucodendrimer. Canadian Journal of Chemistry, 2017, 95, 999-1007.	1.1	6
49	Sites for Dynamic Protein-Carbohydrate Interactions of O- and C-Linked Mannosides on the E. coli FimH Adhesin. Molecules, 2017, 22, 1101.	3.8	23
50	Synthesis of Dense and Chiral Dendritic Polyols Using Glyconanosynthon Scaffolds. Molecules, 2016, 21, 448.	3.8	9
51	Multivalent Carbohydrate-Lectin Interactions: How Synthetic Chemistry Enables Insights into Nanometric Recognition. Molecules, 2016, 21, 629.	3.8	58
52	Expedient synthesis of functional single-component glycoliposomes using thiol–yne chemistry. Journal of Materials Chemistry B, 2016, 4, 4227-4233.	5.8	15
53	Explaining the Serological Characteristics of Streptococcus suis Serotypes 1 and 1/2 from Their Capsular Polysaccharide Structure and Biosynthesis. Journal of Biological Chemistry, 2016, 291, 8387-8398.	3.4	30
54	Protection against Streptococcus suis Serotype 2 Infection Using a Capsular Polysaccharide Glycoconjugate Vaccine. Infection and Immunity, 2016, 84, 2059-2075.	2.2	33

#	Article	IF	CITATIONS
55	Low generation anionic dendrimers modulate islet amyloid polypeptide self-assembly and inhibit pancreatic β-cell toxicity. RSC Advances, 2016, 6, 76360-76369.	3.6	8
56	Cu ⁰ and Pd ⁰ loaded Organo-Bentonites as Sponge-like Matrices for Hydrogen Reversible Capture at Ambient Conditions. ChemistrySelect, 2016, 1, 1452-1461.	1.5	16
57	Insights in CO2 interaction on zeolite omega-supported polyol dendrimers. Thermochimica Acta, 2016, 624, 95-101.	2.7	23
58	Low generation polyamine dendrimers bearing flexible tetraethylene glycol as nanocarriers for plasmids and siRNA. Nanoscale, 2016, 8, 5106-5119.	5.6	24
59	Isotopeâ€labeled differential profiling of metabolites using <i>N</i> â€benzoyloxysuccinimide derivatization coupled to liquid chromatography/highâ€resolution tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2015, 29, 1632-1640.	1.5	11
60	Total mineralization of sulfamethoxazole and aromatic pollutants through Fe2+-montmorillonite catalyzed ozonation. Journal of Hazardous Materials, 2015, 298, 338-350.	12.4	38
61	Glyconanosynthons as powerful scaffolds and building blocks for the rapid construction of multifaceted, dense and chiral dendrimers. Chemical Society Reviews, 2015, 44, 3924-3941.	38.1	51
62	Metal–Inorganic–Organic Matrices as Efficient Sorbents for Hydrogen Storage. ChemSusChem, 2015, 8, 800-803.	6.8	33
63	Dissecting Molecular Aspects of Cell Interactions Using Glycodendrimersomes with Programmable Glycan Presentation and Engineered Human Lectins. Angewandte Chemie - International Edition, 2015, 54, 4036-4040.	13.8	94
64	A fast track strategy toward highly functionalized dendrimers with different structural layers: an "onion peel approach― Polymer Chemistry, 2015, 6, 1436-1444.	3.9	35
65	Engineering a Therapeutic Lectin by Uncoupling Mitogenicity from Antiviral Activity. Cell, 2015, 163, 746-758.	28.9	89
66	Multifaceted glycodendrimers with programmable bioactivity through convergent, divergent, and accelerated approaches using polyfunctional cyclotriphosphazenes. Polymer Chemistry, 2015, 6, 7666-7683.	3.9	30
67	TPD and DSC insights in the basicity of MCM-48-like silica and modified counterparts. Thermochimica Acta, 2015, 600, 52-61.	2.7	13
68	A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 186-235.	2.4	188
69	Defining the Potential of Aglycone Modifications for Affinity/Selectivity Enhancement against Medically Relevant Lectins: Synthesis, Activity Screening, and HSQCâ€Based NMR Analysis. ChemBioChem, 2015, 16, 126-139.	2.6	16
70	Murine Whole-Blood Opsonophagocytosis Assay to Evaluate Protection by Antibodies Raised Against Encapsulated Extracellular Bacteria. Methods in Molecular Biology, 2015, 1331, 81-92.	0.9	7
71	Direct targeted glycation of the free sulfhydryl group of cysteine residue (Cysâ€34) of BSA. Mapping of the glycation sites of the antiâ€ŧumor Thomsen–Friedenreich neoglycoconjugate vaccine prepared by Michael addition reaction. Journal of Mass Spectrometry, 2014, 49, 1223-1233.	1.6	6
72	Synthesis and solvodynamic diameter measurements of closely related mannodendrimers for the study of multivalent carbohydrate–protein interactions. Beilstein Journal of Organic Chemistry, 2014, 10, 1524-1535.	2.2	14

#	Article	IF	CITATIONS
73	A highly versatile convergent/divergent "onion peel―synthetic strategy toward potent multivalent glycodendrimers. Chemical Communications, 2014, 50, 13300-13303.	4.1	54
74	Efficient and accelerated growth of multifunctional dendrimers using orthogonal thiol–ene and SN2 reactions. Chemical Communications, 2014, 50, 1983.	4.1	48
75	"Onion peel―dendrimers: a straightforward synthetic approach towards highly diversified architectures. Polymer Chemistry, 2014, 5, 4321-4331.	3.9	59
76	Mimicking Biological Membranes with Programmable Glycan Ligands Selfâ€Assembled from Amphiphilic Janus Glycodendrimers. Angewandte Chemie - International Edition, 2014, 53, 10899-10903.	13.8	99
77	Study of the Structural and Dynamic Effects in the FimH Adhesin upon α- <scp>d</scp> -Heptyl Mannose Binding. Journal of Medicinal Chemistry, 2014, 57, 1416-1427.	6.4	43
78	Total removal of oxalic acid via synergistic parameter interaction in montmorillonite catalyzed ozonation. Journal of Environmental Chemical Engineering, 2014, 2, 20-30.	6.7	22
79	Significant Other Half of a Glycoconjugate: Contributions of Scaffolds to Lectin–Glycoconjugate Interactions. Biochemistry, 2014, 53, 4445-4454.	2.5	17
80	Glycoconjugate Vaccines Used for Prevention from Biological Agents: Tandem Mass Spectrometric Analysis. NATO Science for Peace and Security Series A: Chemistry and Biology, 2014, , 233-274.	0.5	1
81	Preparation and characterization of hydrophilic organo-montmorillonites through incorporation of non-ionic polyglycerol dendrimers derived from soybean oil. Materials Research Bulletin, 2013, 48, 3466-3473.	5.2	32
82	Aromatic thioglycoside inhibitors against the virulence factor LecA from Pseudomonas aeruginosa. Organic and Biomolecular Chemistry, 2013, 11, 6906.	2.8	81
83	Multivalent scaffolds in glycoscience: an overview. Chemical Society Reviews, 2013, 42, 4515.	38.1	55
84	OH-enriched organo-montmorillonites for potential applications in carbon dioxide separation and concentration. Separation and Purification Technology, 2013, 108, 181-188.	7.9	59
85	Correlation between the hydrophilic character and affinity towards carbon dioxide of montmorillonite-supported polyalcohols. Journal of Colloid and Interface Science, 2013, 402, 215-222.	9.4	38
86	Truly reversible capture of CO2 by montmorillonite intercalated with soya oil-derived polyglycerols. International Journal of Greenhouse Gas Control, 2013, 17, 140-147.	4.6	53
87	Multivalent glycoconjugate syntheses and applications using aromatic scaffolds. Chemical Society Reviews, 2013, 42, 4657.	38.1	223
88	How do multivalent glycodendrimers benefit from sulfur chemistry?. Chemical Society Reviews, 2013, 42, 4823.	38.1	69
89	Modular Synthesis of Amphiphilic Janus Clycodendrimers and Their Self-Assembly into Clycodendrimersomes and Other Complex Architectures with Bioactivity to Biomedically Relevant Lectins. Journal of the American Chemical Society, 2013, 135, 9055-9077.	13.7	261
90	Validation of Reactivity Descriptors to Assess the Aromatic Stacking within the Tyrosine Gate of FimH. ACS Medicinal Chemistry Letters, 2013, 4, 1085-1090.	2.8	34

#	Article	IF	CITATIONS
91	Polyol-modified layered double hydroxides with attenuated basicity for a truly reversible capture of CO2. Adsorption, 2013, 19, 909-918.	3.0	35
92	Glycodendrimers: versatile tools for nanotechnology. Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 85-108.	1.2	49
93	Concanavalin-A-induced autophagy biomarkers requires membrane type-1 matrix metalloproteinase intracellular signaling in glioblastoma cells. Glycobiology, 2012, 22, 1245-1255.	2.5	54
94	Galectin-1-Specific Inhibitors as a New Class of Compounds To Treat HIV-1 Infection. Antimicrobial Agents and Chemotherapy, 2012, 56, 154-162.	3.2	34
95	Diazo Transfer and Click Chemistry in the Solid Phase Syntheses of Lysine-Based Glycodendrimers as Antagonists against <i>Escherichia coli</i> FimH. Molecular Pharmaceutics, 2012, 9, 394-403.	4.6	38
96	The Tyrosine Gate as a Potential Entropic Lever in the Receptor-Binding Site of the Bacterial Adhesin FimH. Biochemistry, 2012, 51, 4790-4799.	2.5	67
97	Glycodendrimer coated gold nanoparticles for proteins detection based on surface energy transfer process. RSC Advances, 2012, 2, 985-991.	3.6	18
98	Glycodendrimers as functional antigens and antitumor vaccines. New Journal of Chemistry, 2012, 36, 324-339.	2.8	84
99	Fluorinated Carbohydrates as Lectin Ligands: Biorelevant Sensors with Capacity to Monitor Anomer Affinity in ¹⁹ Fâ€NMRâ€Based Inhibitor Screening. European Journal of Organic Chemistry, 2012, 2012, 4354-4364.	2.4	20
100	Enantioselective de Novo Synthesis of 4-Deoxy- <scp>d</scp> -hexopyranoses via Hetero-Diels–Alder Cycloadditions: Total Synthesis of Ezoaminuroic Acid and Neosidomycin. Journal of Organic Chemistry, 2011, 76, 9687-9698.	3.2	7
101	Hexaphenylbenzene as a Rigid Template for the Straightforward Syntheses of "Star-Shaped― Glycodendrimers. Journal of Organic Chemistry, 2011, 76, 724-727.	3.2	47
102	The Impacts of Synthetic Chemistry on Human Health. , 2011, , 159-188.		0
103	Synthesis of a small library of bivalent α-d-mannopyranosides for lectin cross-linking. Carbohydrate Research, 2011, 346, 1479-1489.	2.3	23
104	Combining Glycomimetic and Multivalent Strategies toward Designing Potent Bacterial Lectin Inhibitors. Chemistry - A European Journal, 2011, 17, 6545-6562.	3.3	94
105	Multivalent Presentation of Mannose on Hyperbranched Polyglycerol and their Interaction with Concanavalin A Lectin. ChemBioChem, 2011, 12, 1075-1083.	2.6	41
106	Inhibitory potential of chemical substitutions at bioinspired sites of β-d-galactopyranose on neoglycoprotein/cell surface binding of two classes of medically relevant lectins. Bioorganic and Medicinal Chemistry, 2011, 19, 3280-3287.	3.0	49
107	Organic Chemistry and Immunochemical Strategies in the Design of Potent Carbohydrate-based Vaccines. Chimia, 2011, 65, 24.	0.6	22
108	In vitro cytotoxic activity of isolated acridones alkaloids from Zanthoxylum leprieurii Guill. et Perr. Bioorganic and Medicinal Chemistry, 2010, 18, 3601-3605.	3.0	55

#	Article	IF	CITATIONS
109	Structural basis of the affinity for oligomannosides and analogs displayed by BC2L-A, a Burkholderia cenocepacia soluble lectin. Glycobiology, 2010, 20, 87-98.	2.5	48
110	Synthesis and screening of a small glycomimetic library for inhibitory activity on medically relevant galactoside-specific lectins in assays of increasing biorelevance. New Journal of Chemistry, 2010, 34, 2229.	2.8	36
111	Carbon dioxide retention over montmorillonite–dendrimer materials. Applied Clay Science, 2010, 48, 133-137.	5.2	58
112	Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition. Journal of Materials Chemistry, 2010, 20, 7543.	6.7	98
113	Design and Creativity in Synthesis of Multivalent Neoglycoconjugates. Advances in Carbohydrate Chemistry and Biochemistry, 2010, 63, 165-393.	0.9	296
114	Catalytic synthesis of novel 4-C-glycosyl coumarins using a domino Heck reaction/lactonization process. Tetrahedron Letters, 2009, 50, 4254-4257.	1.4	18
115	TPD study of the reversible retention of carbon dioxide over montmorillonite intercalated with polyol dendrimers. Thermochimica Acta, 2009, 496, 45-49.	2.7	51
116	Domino Heck/Lactonization-Catalyzed Synthesis of 3-C-Linked Mannopyranosyl Coumarins. Journal of Organic Chemistry, 2009, 74, 8480-8483.	3.2	21
117	Development, Characterization, and Immunotherapeutic Use of Peptide Mimics of the Thomsen-Friedenreich Carbohydrate Antigen. Neoplasia, 2009, 11, 780-792.	5.3	38
118	Glycomimetics and Glycodendrimers as High Affinity Microbial Antiâ€adhesins. Chemistry - A European Journal, 2008, 14, 7490-7499.	3.3	235
119	Synthesis of stable and selective inhibitors of human galectins-1 and -3. Bioorganic and Medicinal Chemistry, 2008, 16, 7811-7823.	3.0	71
120	First Synthesis of "Majoral-Type―Glycodendrimers Bearing Covalently Bound α-d-Mannopyranoside Residues onto a Hexachlocyclotriphosphazene Core. Journal of Organic Chemistry, 2008, 73, 9292-9302.	3.2	49
121	Expeditive Synthesis of Glycodendrimer Scaffolds Based on Versatile TRIS and Mannoside Derivatives. Journal of Organic Chemistry, 2008, 73, 5602-5605.	3.2	92
122	T-Cell Immunity of Carbohydrates. ACS Symposium Series, 2008, , 1-19.	0.5	4
123	<i>Haemophilus influenzae</i> Type b Conjugate Vaccine with a Synthetic Capsular Polysaccharide Antigen: Chemical View. ACS Symposium Series, 2008, , 71-84.	0.5	2
124	Recent Trends in Glycodendrimer Syntheses and Applications. Current Topics in Medicinal Chemistry, 2008, 8, 1237-1285.	2.1	212
125	Glycosylation of HIV-1 gp120 V3 Loop: Towards the Rational Design of a Synthetic Carbohydrate Vaccine. Current Medicinal Chemistry, 2007, 14, 3232-3242.	2.4	34
126	Glycodendrimers as Anti-Adhesion Drugs Against Type 1 Fimbriated E. coli Uropathogenic Infections. Mini-Reviews in Medicinal Chemistry, 2007, 7, 1270-1283.	2.4	84

#	Article	IF	CITATIONS
127	En route to a carbohydrate-based vaccine against Burkholderia cepacia. Organic and Biomolecular Chemistry, 2007, 5, 2704.	2.8	22
128	Synthesis and binding properties of divalent and trivalent clusters of the Lewis a disaccharide moiety to Pseudomonas aeruginosa lectin PA-IIL. Organic and Biomolecular Chemistry, 2007, 5, 2953.	2.8	58
129	Synthesis of glycodendrimers containing both fucoside and galactoside residues and their binding properties to Pa-IL and PA-IIL lectins from Pseudomonas aeruginosa. New Journal of Chemistry, 2007, 31, 1321.	2.8	93
130	Tri- and hexavalent mannoside clusters as potential inhibitors of type 1 fimbriated bacteria using pentaerythritol and triazole linkages. Chemical Communications, 2007, , 380-382.	4.1	56
131	Mannosylated G(0) Dendrimers with Nanomolar Affinities toEscherichia coli FimH. ChemMedChem, 2007, 2, 1190-1201.	3.2	166
132	Xâ€ray Structures and Thermodynamics of the Interaction of PAâ€IIL from <i>Pseudomonas aeruginosa</i> with Disaccharide Derivatives. ChemMedChem, 2007, 2, 1328-1338.	3.2	61
133	N-Arylimidazole synthesis by cross-cycloaddition of isocyanides using a novel catalytic system. Tetrahedron, 2007, 63, 4912-4917.	1.9	45
134	Practical synthesis of valuable d-rhamnoside building blocks for oligosaccharide synthesis. Tetrahedron Letters, 2007, 48, 2385-2388.	1.4	15
135	Inhibition of Spontaneous Breast Cancer Metastasis by Anti—Thomsen-Friedenreich Antigen Monoclonal Antibody JAA-F11. Neoplasia, 2006, 8, 939-948.	5.3	84
136	Subtle Stereochemical and Electronic Effects in Iridium-Catalyzed Isomerization ofC-Allyl Glycosides. Organic Letters, 2006, 8, 2691-2694.	4.6	15
137	Carbohydrate triazoles and isoxazoles as inhibitors of galectins-1 and -3. Chemical Communications, 2006, , 2379-2381.	4.1	96
138	Inhibition of MMP-2 secretion from brain tumor cells suggests chemopreventive properties of a furanocoumarin glycoside and of chalcones isolated from the twigs of Dorstenia turbinata. Phytochemistry, 2006, 67, 2573-2579.	2.9	60
139	Aryl O- and S-galactosides and lactosides as specific inhibitors of human galectins-1 and -3: Role of electrostatic potential at O-3. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1668-1672.	2.2	61
140	A First QSAR Model for Galectin-3 Glycomimetic Inhibitors Based on 3D Docked Structures. Medicinal Chemistry, 2006, 2, 481-489.	1.5	21
141	Effects of Linker Rigidity and Orientation of Mannoside Cluster for Multivalent Interactions with Proteins. ACS Symposium Series, 2005, , 137-150.	0.5	13
142	Thermodynamic, Kinetic, and Electron Microscopy Studies of Concanavalin A and Dioclea grandiflora Lectin Cross-linked with Synthetic Divalent Carbohydrates. Journal of Biological Chemistry, 2005, 280, 8640-8646.	3.4	62
143	A Synthetic Conjugate Polysaccharide Vaccine Against Haemophilus influenzae Type b. Science, 2004, 305, 522-525.	12.6	444
144	Galectin-3 Precipitates as a Pentamer with Synthetic Multivalent Carbohydrates and Forms Heterogeneous Cross-linked Complexes. Journal of Biological Chemistry, 2004, 279, 10841-10847.	3.4	440

#	Article	IF	CITATIONS
145	New trends in carbohydrate-based vaccines. Drug Discovery Today: Technologies, 2004, 1, 327-336.	4.0	123
146	Cu(II)-Self-Assembling Bipyridyl-Glycoclusters and Dendrimers Bearing the Tn-Antigen Cancer Marker: Syntheses and Lectin Binding Properties ChemInform, 2003, 34, no.	0.0	0
147	Cu(II)-Self-assembling bipyridyl-glycoclusters and dendrimers bearing the Tn-antigen cancer marker: syntheses and lectin binding properties. Tetrahedron, 2003, 59, 3881-3893.	1.9	72
148	Transition Metal-Catalyzed Cross-Coupling Reactions toward the Synthesis of α-d-Mannopyranoside Clusters. Methods in Enzymology, 2003, 362, 3-17.	1.0	11
149	First demonstration of differential inhibition of lectin binding by synthetic tri- and tetravalent glycoclusters from cross-coupling of rigidified 2-propynyl lactoside. Organic and Biomolecular Chemistry, 2003, 1, 3909-3916.	2.8	101
150	Multivalent Breast Cancer T-Antigen Markers Scaffolded onto PAMAM Dendrimers. Methods in Enzymology, 2003, 362, 240-249.	1.0	11
151	A Decade of Glycodendrimer Chemistry Trends in Glycoscience and Glycotechnology, 2003, 15, 291-310.	0.1	165
152	Glycodendrimers: novel glycotope isosteres unmasking sugar coding. Case study with T-antigen markers from breast cancer MUC1 glycoprotein. Reviews in Molecular Biotechnology, 2002, 90, 291-309.	2.8	117
153	Efficient Ruthenium Carbenoid-Catalyzed Cross-Metathesis of Allyl Halides with Olefins. Organic Letters, 2002, 4, 2723-2726.	4.6	35
154	Analysis of Proteinâ~'Carbohydrate Interaction at the Lower Size Limit of the Protein Part (15-Mer) Tj ETQq0 0 0 r Biochemistry, 2002, 41, 9707-9717.	gBT /Over 2.5	lock 10 Tf 5(35
155	Negative Cooperativity Associated with Binding of Multivalent Carbohydrates to Lectins. Thermodynamic Analysis of the "Multivalency Effect― Biochemistry, 2002, 41, 1351-1358.	2.5	96
156	Thermodynamic Binding Parameters of Individual Epitopes of Multivalent Carbohydrates to Concanavalin A As Determined by "Reverse―Isothermal Titration Microcalorimetry. Biochemistry, 2002, 41, 1359-1363.	2.5	72
157	DESIGNING NOVEL MULTIVALENT GLYCOTOOLS FOR BIOCHEMICAL INVESTIGATIONS RELATED TO SIALIC ACID. Journal of Carbohydrate Chemistry, 2002, 21, 769-798.	1.1	15
158	A New Palladium-Catalyzed Phenyl-Alkene Bond Formation. Molecules, 2002, 7, 433-436.	3.8	4
159	Inhibition of Adhesion of Type 1 Fimbriated Escherichia coli to Highly Mannosylated Ligands. ChemBioChem, 2002, 3, 836-844.	2.6	150
160	Chemical modification of chitosan 11: chitosan–dendrimer hybrid as a tree like molecule. Carbohydrate Polymers, 2002, 49, 195-205.	10.2	44
161	Synthesis and protein binding properties of T-antigen containing GlycoPAMAM dendrimers. Bioorganic and Medicinal Chemistry, 2002, 10, 11-17.	3.0	72
162	Synthesis and antibody binding properties of glycodendrimers bearing the tumor related T-antigen. Chemical Communications, 2001, , 257-258.	4.1	28

#	Article	IF	CITATIONS
163	Synthesis of clustered xenotransplantation antagonists using palladium-catalyzed cross-coupling of prop-2-ynyl α-D-galactopyranoside. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 773-779.	1.3	23
164	Synthesis of N,Nâ€~-bis(Acrylamido)acetic Acid-Based T-Antigen Glycodendrimers and Their Mouse Monoclonal IgG Antibody Binding Properties. Journal of the American Chemical Society, 2001, 123, 1809-1816.	13.7	74
165	Relative Lectin Binding Properties of T-Antigen-Containing Glycopolymers: Copolymerization ofN-Acryloylated T-Antigen Monomer vs. Graft Conjugation of Aminated T-Antigen Ligands onto Poly(N-acryloxysuccinimide). Macromolecular Bioscience, 2001, 1, 305-311.	4.1	24
166	Simultaneous binding of mouse monoclonal antibody and streptavidin to heterobifunctional dendritic l -lysine core bearing T-antigen tumor marker and biotin. Bioorganic and Medicinal Chemistry, 2001, 9, 3005-3011.	3.0	21
167	Synthesis of "Sugar-Rods―with Phytohemagglutinin Cross-Linking Properties by Using the Palladium-Catalyzed Sonogashira Reaction. Chemistry - A European Journal, 2000, 6, 1757-1762.	3.3	45
168	Transition metal-catalyzed syntheses of â€~rod-like' thioglycoside dimers. Tetrahedron Letters, 2000, 41, 1155-1158.	1.4	23
169	Binding of Multivalent Carbohydrates to Concanavalin A andDioclea grandiflora Lectin. Journal of Biological Chemistry, 2000, 275, 14223-14230.	3.4	196
170	Synthesis of `Molecular Asterisks' via Sequential Cross-Metathesis, Sonogashira and Cyclotrimerization Reactions. Synthesis, 2000, 2000, 862-868.	2.3	36
171	Chemical modification of chitosan: preparation of chitosan–sialic acid branched polysaccharide hybrids. Chemical Communications, 2000, , 909-910.	4.1	39
172	Recent applications of olefin metathesis and related reactions in carbohydrate chemistry. Chemical Communications, 2000, , 519-529.	4.1	156
173	Synthesis of Persialylated Î ² -Cyclodextrins. Journal of Organic Chemistry, 2000, 65, 8743-8746.	3.2	45
174	Design and Synthesis of Water-Soluble Glycopolymers Bearing Breast Tumor Marker and Enhanced Lipophilicity for Solid-Phase Assays. Biomacromolecules, 2000, 1, 768-770.	5.4	31
175	Regiospecific Syntheses of <i>N</i> -Acetyllactosamine Derivatives and Application Toward a Highly Practical Synthesis of Lewis X Trisaccharide. Journal of Carbohydrate Chemistry, 1999, 18, 755-773.	1.1	35
176	A solid-phase glycosyltransferase assay for high-throughput screening in drug discovery research. Glycoconjugate Journal, 1999, 16, 607-615.	2.7	23
177	Amphiphilicp-tert-Butylcalix[4]arene Scaffolds Containing Exposed Carbohydrate Dendrons. Angewandte Chemie - International Edition, 1999, 38, 369-372.	13.8	144
178	Inhibition of Viral Adhesion and Infection by Sialic-Acid-Conjugated Dendritic Polymers. Bioconjugate Chemistry, 1999, 10, 271-278.	3.6	245
179	Extended Alkenyl Glycosides by Ruthenium-Catalyzed Cross-Metathesis Reaction and Application toward Novel C-Linked Pseudodisaccharides. Journal of Organic Chemistry, 1999, 64, 5408-5412.	3.2	53
180	Synthesis of Per-Glycosylated β-Cyclodextrins Having Enhanced Lectin Binding Affinity. Journal of Organic Chemistry, 1999, 64, 522-531.	3.2	83

#	Article	IF	CITATIONS
181	Effect of shape, size, and valency of multivalent mannosides on their binding properties to phytohemagglutinins. Glycoconjugate Journal, 1998, 15, 251-263.	2.7	68
182	Diversity of C-linked neoglycopeptides for the exploration of subsite-assisted carbohydrate binding interactions. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 1127-1132.	2.2	27
183	Alkenyl O- and C-glycopyranoside homodimerization by olefin metathesis reaction. Chemical Communications, 1998, , 2437-2438.	4.1	35
184	Scope and Applications of "Active and Latent" Thioglycosyl Donors. Part 4. Journal of Carbohydrate Chemistry, 1998, 17, 609-631.	1.1	34
185	Practical Synthesis of Starburst PAMAM α-Thiosialodendrimers for Probing Multivalent Carbohydrateâ `'Lectin Binding Properties. Journal of Organic Chemistry, 1998, 63, 3486-3491.	3.2	120
186	Development and Characterization of Monoclonal Antibody to T-Antigen: (Galβl—3GalNAc-α-O). Hybridoma, 1998, 17, 165-173.	0.6	52
187	Synthesis and Biological Properties of Mannosylated Starburst Poly(amidoamine) Dendrimers. Bioconjugate Chemistry, 1997, 8, 714-723.	3.6	114
188	Phase Transfer Catalyzed Anomeric Nucleophilic Substitutions with D-Xylopyranosyl Halides. Journal of Carbohydrate Chemistry, 1997, 16, 1281-1292.	1.1	10
189	Recent developments in the rational design of multivalent glycoconjugates. Topics in Current Chemistry, 1997, , 241-274.	4.0	99
190	Optimizing lectin-carbohydrate interactions: improved binding of divalent alpha-mannosylated ligands towards Concanavalin A. Glycoconjugate Journal, 1997, 14, 345-356.	2.7	47
191	Chemoenzymatic synthesis of dendritic sialyl Lewisx. Carbohydrate Research, 1997, 305, 433-442.	2.3	57
192	Syntheses and some applications of chemically defined multivalent glycoconjugates. Current Opinion in Structural Biology, 1996, 6, 692-702.	5.7	321
193	Synthesis and lectin binding properties of dendritic mannopyranoside. Chemical Communications, 1996, , 1913-1914.	4.1	38
194	Blue-Prints, Synthesis and Applications of Glycopolymers Trends in Glycoscience and Glycotechnology, 1996, 8, 79-99.	0.1	83
195	Synthesis of divalent α-D-mannopyranosylated clusters having enhanced binding affinities towards concanavalin A and pea lectins. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1765-1770.	2.2	32
196	Macromolecular recognition: Effect of multivalency in the inhibition of binding of yeast mannan to concanavalin A and pea lectins by mannosylated dendrimers. Bioorganic and Medicinal Chemistry, 1996, 4, 1949-1961.	3.0	139
197	Substituent-induced chemical shifts of aromatic carbon centres in a series of non-acetylated and peracetylatedPara-substituted aryl 2-N-acetamido-2-deoxy-β-D-glucopyranosides. Magnetic Resonance in Chemistry, 1995, 33, 981-984.	1.9	0
198	Mild stereoselective syntheses of thioglycosides under PTC conditions and their use as active and latent glycosyl donors. Tetrahedron: Asymmetry, 1994, 5, 2303-2312.	1.8	70

#	Article	IF	CITATIONS
199	Phase Transfer Catalysis as a General and Stereoselective Entry into Glycosyl Azides from Glycosyl Halides. Synthesis, 1992, 1992, 618-620.	2.3	129
200	Synthesis of S-Glycosyl Xanthates by Phase Transfer Catalyzed Substitution of Glycosyl Halides. Journal of Carbohydrate Chemistry, 1992, 11, 741-750.	1.1	31
201	"Active―and "latent―thioglycosyl donors in oligosaccharide synthesis. Application to the synthesis of α-sialosides. Tetrahedron Letters, 1992, 33, 6053-6056.	1.4	146
202	Phase transfer catalyzed synthesis of 4-nitrophenyl 1-thio-β-d-glycobiosides. Carbohydrate Research, 1992, 229, 149-154.	2.3	26
203	Synthesis of Esterase-resistant 9-O-Acetylated Polysialoside as Inhibitor of Influenza C Virus Hemagglutinin. Angewandte Chemie International Edition in English, 1992, 31, 1478-1481.	4.4	74
204	Synthese Esteraseâ€bestädiger, 9â€ <i>O</i> â€acetylierter Polysialoside als Inhibitoren des Influenzaâ€Câ€Virusâ€Häagglutinins. Angewandte Chemie, 1992, 104, 1551-1554.	2.0	10
205	1H and13C chemical shift assignments ofpara-substituted aryl 2-acetamido-2-deoxy-β-D-glucopyranosides. Magnetic Resonance in Chemistry, 1991, 29, 852-858.	1.9	7
206	Stereospecific Synthesis of 1,2-trans-1-Phenylthio-β-D-Disaccharides Under Phase Transfer Catalysis. Synthesis, 1991, 1991, 734-736.	2.3	49
207	Efficient synthesis of ?(2?8)-linkedN-acetyl andN-glycolylneuraminic acid disaccharides from colominic acid. Clycoconjugate Journal, 1990, 7, 3-12.	2.7	34
208	Stereospecific Synthesis of Aryl β-D-N-Acetylglucopyranosides by Phase Transfer Catalysis. Synthetic Communications, 1990, 20, 2097-2102.	2.1	47