Zhi-Gang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3054653/publications.pdf

Version: 2024-02-01

109	3,582	31 h-index	57
papers	citations		g-index
112	112	112	3805
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Magnetic-field manipulation of circularly polarized photoluminescence in chiral perovskites. Materials Horizons, 2022, 9, 740-747.	12.2	21
2	Rashba splitting in organic–inorganic lead–halide perovskites revealed through two-photon absorption spectroscopy. Nature Communications, 2022, 13, 483.	12.8	31
3	Excitons in Hybrid Organic–Inorganic Perovskites. , 2022, , 195-239.		0
4	Omnidirectional exciton diffusion in quasi-2D hybrid organic–inorganic perovskites. Journal of Chemical Physics, 2022, 156, 124706.	3.0	3
5	Quantized Exciton Motion and Fine Energy-Level Structure of a Single Perovskite Nanowire. Nano Letters, 2022, 22, 2907-2914.	9.1	5
6	Exciton-acoustic phonon coupling revealed by resonant excitation of single perovskite nanocrystals. Nature Communications, 2021, 12, 2192.	12.8	10
7	Chirality-Induced Spin–Orbit Coupling, Spin Transport, and Natural Optical Activity in Hybrid Organic–Inorganic Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 8638-8646.	4.6	40
8	Transition from Doublet to Triplet Excitons in Single Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 5750-5755.	4.6	9
9	Tuning of spin-orbit coupling in metal-free conjugated polymers by structural conformation. Physical Review Materials, 2020, 4, .	2.4	16
10	Detection of Rashba spin splitting in 2D organic-inorganic perovskite via precessional carrier spin relaxation. APL Materials, 2019, 7, 081116.	5.1	46
11	Ultrafast acoustic phonon scattering in CH3NH3PbI3 revealed by femtosecond four-wave mixing. Journal of Chemical Physics, 2019, 151, 144702.	3.0	10
12	Optical deformation potential and self-trapped excitons in 2D hybrid perovskites. Physical Chemistry Chemical Physics, 2019, 21, 22293-22301.	2.8	13
13	Photodefined In-Plane Heterostructures in Two-Dimensional In ₂ Se ₃ Nanolayers for Ultrathin Photodiodes. ACS Applied Nano Materials, 2019, 2, 6774-6782.	5.0	25
14	Controlling Magnetoresistance by Oxygen Impurities in Mq3-Based Molecular Spin Valves. ACS Applied Materials & Spin Valves	8.0	18
15	Magnetic field effects on excited states, charge transport, and electrical polarization in organic semiconductors in spin and orbital regimes. Advances in Physics, 2019, 68, 49-121.	14.4	57
16	Unraveling the Spin Relaxation Mechanism in Hybrid Organic–Inorganic Perovskites. Journal of Physical Chemistry C, 2019, 123, 14701-14706.	3.1	7
17	Resonant free-carrier absorption in 2D hybrid organic-inorganic perovskites: The Rashba effect or small polarons?. Journal of Chemical Physics, 2019, 151, 204106. Field-induced spin splitting and anomalous photoluminescence circular polarization in < mml:math	3.0	1
18	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">C</mml:mi><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mi mathvariant="normal">N</mml:mi><mml:msub><mml:mi mathvariant="normal">N</mml:mi><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:msub><mml:mn></mml:mn></mml:msub><mml:mi>Pb</mml:mi><mml:msub><m< td=""><td>3.2 nml:mi</td><td>26</td></m<></mml:msub></mml:msub></mml:msub></mml:mrow>	3.2 nml:mi	26

#	Article	lF	CITATIONS
19	Device Physics and Spin Transport in Organic Spin Valves. Materials and Energy, 2018, , 173-223.	0.1	1
20	Theoretical study of native point defects in strained-layer superlattice systems. Journal of Applied Physics, 2018, 123, 161414.	2.5	5
21	Oscillatory Magnetic Circular Dichroism of Free-Carrier Absorption and Determination of the Rashba Dispersions in Hybrid Organic–Inorganic Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 1-7.	4.6	11
22	Triplet exciton fine structure in Pt-rich polymers studied by circularly polarized emission under high magnetic field. Physical Review B, 2018, 98, .	3.2	1
23	Estimation of the Rashba Strength from Second Harmonic Generation in 2D and 3D Hybrid Organic–Inorganic Perovskites. Journal of Physical Chemistry C, 2018, 122, 29607-29612.	3.1	12
24	Anharmonic Phonon Coupling in Single-Crystal Semiconducting and Metal-Like van der Waals In ₂ Se ₃ . Journal of Physical Chemistry C, 2018, 122, 22849-22855.	3.1	20
25	Plasmonic circular dichroism of vesicle-like nanostructures by the template-less self-assembly of achiral Janus nanoparticles. Nanoscale, 2018, 10, 14586-14593.	5.6	10
26	Spin relaxation and diffusion in disordered organic solids. Journal of Photonics for Energy, 2018, 8, 1.	1.3	2
27	Material considerations for current and next generation microbolometer technology. , 2018, , .		1
28	Excitons in Orthorhombic and Tetragonal Hybrid Organic–Inorganic Perovskites. Journal of Physical Chemistry C, 2017, 121, 3156-3160.	3.1	8
29	A designing principle for low dark-current strained layer superlattices. Applied Physics Letters, 2017, 110, 021113.	3.3	10
30	Metasurface polarization splitter. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160072.	3.4	23
31	The Rashba effect and indirect electron–hole recombination in hybrid organic–inorganic perovskites. Physical Chemistry Chemical Physics, 2017, 19, 14907-14912.	2.8	34
32	Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nature Physics, 2017, 13, 894-899.	16.7	184
33	High-Pressure Structural Response of an Insensitive Energetic Crystal: Dihydroxylammonium 5,5′-Bistetrazole-1,1′-diolate (TKX-50). Journal of Physical Chemistry C, 2017, 121, 5761-5767.	3.1	28
34	Formation energies of native point defects in strained-layer superlattices. AIP Advances, 2017, 7, 065203.	1.3	6
35	Green's function-based defect identification in InAs-InAs1-xSbx strained layer superlattices. AIP Advances, 2017, 7, .	1.3	3
36	Rashba Effect and Carrier Mobility in Hybrid Organic–Inorganic Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 3078-3083.	4.6	62

#	Article	IF	CITATIONS
37	Effective-mass model and magneto-optical properties in hybrid perovskites. Scientific Reports, 2016, 6, 28576.	3.3	120
38	High-Pressure Structural Response of an Insensitive Energetic Crystal: 1,1-Diamino-2,2-dinitroethene (FOX-7). Journal of Physical Chemistry C, 2016, 120, 27600-27607.	3.1	22
39	Hybrid Hamiltonian and Green's Function Approach for Studying Native Point Defect Levels in Semiconductor Compounds and Superlattices. Journal of Electronic Materials, 2016, 45, 4574-4579.	2.2	5
40	High-Pressure Crystal Structures of an Insensitive Energetic Crystal: 1,1-Diamino-2,2-dinitroethene. Journal of Physical Chemistry C, 2016, 120, 1218-1224.	3.1	42
41	The role of heavy metal ions on spin transport in organic semiconductors. New Journal of Physics, 2015, 17, 013004.	2.9	9
42	Spin Hall Effect in Disordered Organic Solids. Physical Review Letters, 2015, 115, 026601.	7.8	16
43	Fabrication of highly spin-polarized Co2FeAl0.5Si0.5 thin-films. APL Materials, 2014, 2, .	5.1	12
44	Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector. Applied Physics Letters, 2014, 104, .	3.3	201
45	Inter-triplet spin–spin interaction effects on inter-conversion between different spin states in intermediate triplet–triplet pairs towards singlet fission. Organic Electronics, 2014, 15, 2168-2172.	2.6	5
46	Impurity-band transport in organic spin valves. Nature Communications, 2014, 5, 4842.	12.8	51
47	Generalized effective-medium theory for metamaterials. Physical Review B, 2014, 89, .	3.2	52
48	Perfect dielectric-metamaterial reflector. Physical Review B, 2013, 88, .	3.2	111
49	Hyperfine interaction and its effects on spin dynamics in organic solids. Physical Review B, 2013, 87, .	3.2	38
50	Suppression of the Hanle Effect in Organic Spintronic Devices. Physical Review Letters, 2013, 111, 016601.	7.8	60
51	Spin-orbit coupling and its effects in organic solids. Physical Review B, 2012, 85, .	3.2	84
52	Spin-Orbit Coupling, Spin Relaxation, and Spin Diffusion in Organic Solids. Physical Review Letters, 2011, 106, 106602.	7.8	117
53	Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids. , 2011, , .		0
54	Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GalnAs, and InAsP. Journal of Applied Physics, 2011, 109, .	2.5	40

#	Article	IF	CITATIONS
55	Transfer lengths and spin injection from a three-dimensional ferromagnet into graphene. Physical Review B, 2010, 82, .	3.2	5
56	Noninvasive electrical detection of electron spin dynamics at the N atom in N@C60. Journal of Physics Condensed Matter, 2010, 22, 295305.	1.8	3
57	Large magnetoresistance of thick polymer devices having La0.67Sr0.33MnO3 electrodes. Applied Physics Letters, 2009, 95, .	3.3	15
58	Microscopic theory of electron spin relaxation in N@ <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>C</mml:mtext><mml:mrow><mml:mn>60</mml:mn>< Physical Review B, 2008, 77, .</mml:mrow></mml:msub></mml:mrow></mml:math>	/mmt:mrov	w> ¹⁰ mml:msu
59	Electrically controlled < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mi>g factor and magnetism in conjugated metallorganic molecules. Physical Review B, 2008, 78, .	3.2	3
60	Spatially correlated fluctuations and coherence dynamics in photosynthesis. Physical Review E, 2008, 78, 050902.	2.1	22
61	Fluorescent resonant energy transfer: Correlated fluctuations of donor and acceptor. Journal of Chemical Physics, 2007, 127, 221101.	3.0	10
62	Accurate evaluation of nonlinear absorption coefficients in InAs, InSb, and HgCdTe alloys. Journal of Applied Physics, 2007, 101, 113104.	2.5	19
63	High intensity light propagation in InAs. Applied Physics Letters, 2006, 89, 161108.	3.3	8
64	Spin Gunn Effect. Physical Review Letters, 2006, 96, 026602.	7.8	28
65	Photoexcited-carrier-induced refractive index change in small bandgap semiconductors. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 2356.	2.1	21
66	Recent progress towards the development of ferromagnetic nitride semiconductors for spintronic applications. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2729-2737.	1.8	27
67	Minority carrier lifetimes in HgCdTe alloys. Journal of Electronic Materials, 2006, 35, 1369-1378.	2.2	43
68	Origin of ferromagnetism in semiconducting ($\ln 1\hat{a}^2$ x \hat{a}^2 yFexCuy)2O3 \hat{a}^2 J. Physical Review B, 2006, 74, .	3.2	47
69	Model for minority carrier lifetimes in doped HgCdTe. Journal of Electronic Materials, 2005, 34, 873-879.	2.2	28
70	Spin relaxation of electrons and holes in zinc-blende semiconductors. Physical Review B, 2005, 71, .	3.2	42
71	Spin drift, spin precession, and magnetoresistance of noncollinear magnet-polymer-magnet structures. Physical Review B, 2005, 71, .	3.2	31
72	Core-Shell Nanorods for Efficient Photoelectrochemical Hydrogen Production. Materials Research Society Symposia Proceedings, 2005, 885, 1.	0.1	0

#	Article	IF	Citations
73	Organic magnetic-field-effect transistors and ultrasensitive magnetometers. Journal of Applied Physics, 2005, 97, 024510.	2.5	17
74	Coreâ°'Shell Nanorods for Efficient Photoelectrochemical Hydrogen Production. Journal of Physical Chemistry B, 2005, 109, 22913-22919.	2.6	26
75	Vibrational edge modes in intrinsically heterogeneous doped transition metal oxides. Physical Review B, 2004, 70, .	3.2	10
76	Title is missing!. Journal of Superconductivity and Novel Magnetism, 2003, 16, 233-236.	0.5	1
77	Very Large Magnetoresistance in Lateral Ferromagnetic (Ga,Mn)As Wires with Nanoconstrictions. Physical Review Letters, 2003, 91, 216602.	7.8	146
78	Theory of semiconductor magnetic bipolar transistors. Applied Physics Letters, 2003, 82, 4740-4742.	3.3	90
79	Spin diffusion and injection in semiconductor structures:â€, Electric field effects. Physical Review B, 2002, 66, .	3.2	201
80	Electric-field dependent spin diffusion and spin injection into semiconductors. Physical Review B, 2002, 66, .	3. 2	169
81	Molecular geometry fluctuations and field-dependent mobility in conjugated polymers. Physical Review B, 2001, 63, .	3.2	143
82	Variable Range Hopping and Electrical Conductivity along the DNA Double Helix. Physical Review Letters, 2001, 86, 6018-6021.	7.8	191
83	Charge localization and phonon spectra in hole-doped La2NiO4. Journal of Physics Condensed Matter, 2000, 12, L317-L322.	1.8	13
84	Polarizability fluctuations in dielectric materials with quenched disorder. Physical Review E, 2000, 62, 4698-4701.	2.1	2
85	Charge ordering and long-range interactions in layered transition metal oxides: A quasiclassical continuum study. Physical Review B, 2000, 62, 4353-4369.	3.2	40
86	Molecular Geometry Fluctuation Model for the Mobility of Conjugated Polymers. Physical Review Letters, 2000, 84, 721-724.	7.8	155
87	Dynamics of electronic transport in metal/organic/metal structures. Journal of Physics Condensed Matter, 1999, 11, L7-L14.	1.8	5
88	Charge Ordering and Long-Range Interactions in Layered Transition Metal Oxides. Physical Review Letters, 1999, 82, 4679-4682.	7.8	57
89	Green's function approach for a dynamical study of transport in metal/organic/metal structures. Physical Review B, 1999, 59, 16001-16010.	3.2	32
90	Mesoscale Charge-Ordering in Transition Metal Oxides: Formation and Signatures. Journal of Superconductivity and Novel Magnetism, 1999, 12, 209-213.	0.5	2

#	Article	IF	Citations
91	Stability of bipolarons in conjugated polymers. Synthetic Metals, 1999, 101, 325-326.	3.9	18
92	Stability of bipolarons in conjugated polymers. Optical Materials, 1998, 9, 502-506.	3.6	26
93	Signatures of stripe phases in hole-dopedLa2NiO4. Physical Review B, 1998, 58, 503-513.	3.2	16
94	Electronic transmission in conjugated-oligomer tunnel structures: effects of lattice fluctuations. Journal of Physics Condensed Matter, 1998, 10, 617-638.	1.8	2
95	Low-energy magnetic excitations in. Journal of Physics Condensed Matter, 1998, 10, L437-L443.	1.8	4
96	Charge localization and stripes in a two-dimensional three-band Peierls-Hubbard model. Physical Review B, 1998, 57, R3241-R3244.	3.2	25
97	Excitons in quasi-one-dimensional organics: Strong correlation approximation. Physical Review B, 1997, 56, 3697-3716.	3.2	8
98	Effects of lattice fluctuations on electronic transmission in metal/conjugated-oligomer/metal structures. Physical Review B, 1997, 56, 6494-6497.	3.2	17
99	Effect of Lattice Quantum Fluctuation on CDW of MX Solids. Communications in Theoretical Physics, 1996, 25, 385-390.	2.5	0
100	Excitons in two coupled conjugated polymer chains. Journal of Physics Condensed Matter, 1996, 8, 8847-8857.	1.8	12
101	Excitons, biexcitons, and the band gap in poly(p-phenylene vinylene). Physical Review B, 1995, 52, 4849-4854.	3.2	27
102	Effect of electron correlation on vibrational frequencies of Agmodes in C60. Physical Review B, 1995, 51, 7451-7455.	3.2	4
103	Electron interaction and energy gap of CDW in MX complex. Synthetic Metals, 1995, 70, 1199-1200.	3.9	6
104	Ground State and Band Gap of MX complex. Communications in Theoretical Physics, 1994, 21, 385-390.	2.5	0
105	Electron correlation in the charge-density wave state of MX complexes. Journal of Physics Condensed Matter, 1994, 6, 6773-6782.	1.8	2
106	Effects of electron correlation on the band gap of a chain of halogen-bridged transition-metal compounds. Physical Review B, 1994, 50, 18633-18636.	3.2	2
107	Intersubband coulomb scattering effecton highâ€field hotâ€electron transport in a quantum wire. Physica Status Solidi (B): Basic Research, 1994, 183, 529-538.	1.5	1
108	The effect of electron correlation on the bond structure of C60. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 190, 185-188.	2.1	3

#	Article	lF	CITATIONS
109	Prediction of Shockley-Read-Hall Centers in Strained Layer Superlattices for Mid-Wave Infrared Photodetectors. Journal of Electronic Materials, 0, , .	2.2	1