
Laurent Combettes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3054432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nature Methods, 2006, 3, 47-53.	9.0	522
2	Calcium Oscillations. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004226-a004226.	2.3	231
3	Generation of functional cholangiocyteâ€like cells from human pluripotent stem cells and HepaRG cells. Hepatology, 2014, 60, 700-714.	3.6	177
4	From calcium blips to calcium puffs: Theoretical analysis of the requirements for interchannel communication. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13750-13755.	3.3	165
5	Connexin-dependent inter-cellular communication increases invasion and dissemination of Shigella in epithelial cells. Nature Cell Biology, 2003, 5, 720-726.	4.6	159
6	Coordinated intercellular calcium waves induced by noradrenaline in rat hepatocytes: dual control by gap junction permeability and agonist. EMBO Journal, 1997, 16, 5398-5407.	3.5	153
7	Calcium Dynamics: Spatioâ€Temporal Organization from the Subcellular to the Organ Level. International Review of Cytology, 2007, 261, 193-245.	6.2	104
8	ATP release after partial hepatectomy regulates liver regeneration in the rat. Journal of Hepatology, 2010, 52, 54-62.	1.8	91
9	Hierarchical organization of calcium signals in hepatocytes: from experiments to models. Biochimica Et Biophysica Acta - Molecular Cell Research, 2000, 1498, 134-152.	1.9	90
10	Transitions between three swimming gaits in <i>Paramecium</i> escape. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7290-7295.	3.3	89
11	Mechanism of receptorâ€oriented intercellular calcium wave propagation in hepatocytes. FASEB Journal, 2000, 14, 279-289.	0.2	87
12	Intracellular Ca 2+ Handling in Vascular Smooth Muscle Cells Is Affected by Proliferation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1225-1235.	1.1	85
13	Interplay Between Intracellular Ca2+ Oscillations and Ca2+-stimulated Mitochondrial Metabolism. Scientific Reports, 2016, 6, 19316.	1.6	81
14	Receptor-oriented intercellular calcium waves evoked by vasopressin in rat hepatocytes. EMBO Journal, 1998, 17, 4695-4703.	3.5	78
15	Stochastic simulation of a single inositol 1,4,5-trisphosphatemsensitive Ca2+ channel reveals repetitive openings during â€ ⁻ blip-like' Ca2+ transients. Cell Calcium, 1998, 23, 291-302.	1.1	78
16	Stochastic Aspects of Oscillatory Ca2+ Dynamics in Hepatocytes. Biophysical Journal, 2008, 95, 2193-2202.	0.2	70
17	Phosphatidylinositol 3-Kinase and Calcium-Activated Transcription Pathways Are Required for VLDL-Induced Smooth Muscle Cell Proliferation. Circulation Research, 2003, 92, 1115-1122.	2.0	64
18	Protein Kinase C-Dependent Potentiation of Intracellular Calcium Influx by σ1 Receptor Agonists in Rat Hippocampal Neurons. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 705-712.	1.3	63

LAURENT COMBETTES

#	Article	lF	CITATIONS
19	Investigation of the roles of Ca2+ and Ins <i>P</i> 3 diffusion in the coordination of Ca2+ signals between connected hepatocytes. Journal of Cell Science, 2001, 114, 1999-2007.	1.2	58
20	Do submaximal InsP3concentrations only induce the partial discharge of permeabilized hepatocyte calcium pools because of the concomitant reduction of intraluminal Ca2+concentration?. FEBS Letters, 1992, 301, 287-290.	1.3	54
21	Cytosolic calcium regulates liver regeneration in the rat. Hepatology, 2010, 52, 602-611.	3.6	46
22	Extracellular-loop peptide antibodies reveal a predominant hemichannel organization of connexins in polarized intestinal cells. Experimental Cell Research, 2008, 314, 1250-1265.	1.2	45
23	In vitro inhibition, by loratadine and descarboxyethoxyloratadine, of histamine release from human basophils, and of histamine release and intracellular calcium fluxes in rat basophilic leukemia cells (RBL-2H3). Biochemical Pharmacology, 1994, 47, 789-794.	2.0	41
24	Dual dynamics of mitochondrial permeability transition pore opening. Scientific Reports, 2020, 10, 3924.	1.6	41
25	3′:5′-cyclic guanosine monophosphate (cGMP) potentiates the inositol 1,4,5-trisphosphate-evoked Ca2+ release in guinea-pig hepatocytes. Biochemical Journal, 1996, 318, 849-855.	1.7	39
26	Follicle-Stimulating Hormone Receptors in Oocytes?. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 2266-2276.	1.8	39
27	Two Families with Normosmic Congenital Hypogonadotropic Hypogonadism and Biallelic Mutations in KISS1R (KISS1 Receptor): Clinical Evaluation and Molecular Characterization of a Novel Mutation. PLoS ONE, 2013, 8, e53896.	1.1	38
28	Cytoplasmic and Mitochondrial Calcium Signaling: A Two-Way Relationship. Cold Spring Harbor Perspectives in Biology, 2019, 11, a035139.	2.3	36
29	Bile acids mobilise internal Ca2+ independently of external Ca2+ in rat hepatocytes. FEBS Journal, 1990, 190, 619-623.	0.2	35
30	Actin-based confinement of calcium responses during Shigella invasion. Nature Communications, 2013, 4, 1567.	5.8	35
31	Biphenyl 2,3′,4,5′,6â€pentakisphosphate, a novel inositol polyphosphate surrogate, modulates Ca 2+ responses in rat hepatocytes. FASEB Journal, 2007, 21, 1481-1491.	0.2	34
32	<i>Paramecium</i> swimming and ciliary beating patterns: a study on four RNA interference mutations. Integrative Biology (United Kingdom), 2015, 7, 90-100.	0.6	33
33	Hypothalamic vasopressin release and hepatocyte Ca 2+ signaling during liver regeneration: an interplay stimulating liver growth and bile flow. FASEB Journal, 2003, 17, 1-24.	0.2	32
34	Remodelling of calcium signalling during liver regeneration in the rat. Journal of Hepatology, 2007, 46, 247-256.	1.8	29
35	Chronic alcohol feeding potentiates hormoneâ€induced calcium signalling in hepatocytes. Journal of Physiology, 2017, 595, 3143-3164.	1.3	29
36	Functional coupling between the caffeine/ryanodine-sensitive Ca2+ store and mitochondria in rat aortic smooth muscle cells. Biochemical Journal, 2001, 357, 363-371.	1.7	25

LAURENT COMBETTES

#	Article	IF	CITATIONS
37	Rat hepatocytes express functional P2X receptors. FEBS Letters, 2007, 581, 3260-3266.	1.3	25
38	Sphingosine kinase-1 inhibition protects primary rat hepatocytes against bile salt-induced apoptosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1922-1929.	1.8	25
39	Fine tuning of cytosolic Ca2+ oscillations. F1000Research, 2016, 5, 2036.	0.8	25
40	Modelling the effect of specific inositol 1,4,5â€ŧrisphosphate receptor isoforms on cellular Ca ²⁺ signals. Biology of the Cell, 2006, 98, 171-182.	0.7	24
41	The <i>Shigella</i> type <scp>III</scp> effector IpgD recodes Ca ²⁺ signals during invasion of epithelial cells. EMBO Journal, 2017, 36, 2567-2580.	3.5	21
42	Ca2+ signals triggered by bacterial pathogens and microdomains. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1838-1845.	1.9	21
43	Effect of the bile acid taurolithocholate on cell calcium in saponin-treated rat hepatocytes. FEBS Letters, 1988, 227, 161-166.	1.3	20
44	Coding and decoding of oscillatory Ca2+ signals. Seminars in Cell and Developmental Biology, 2019, 94, 11-19.	2.3	20
45	What can we learn from the irregularity of Ca2+ oscillations?. Chaos, 2009, 19, 037112.	1.0	17
46	Functional coupling between the caffeine/ryanodine-sensitive Ca2+ store and mitochondria in rat aortic smooth muscle cells. Biochemical Journal, 2001, 357, 363.	1.7	16
47	Cadmium disorganises the scaffolding of gap and tight junction proteins in the hepatic cell line WIF B9. Biology of the Cell, 2013, 105, 561-575.	0.7	16
48	Characterization of the Effect of the Mitochondrial Protein Hint2 onÂlntracellular Ca2+ dynamics. Biophysical Journal, 2013, 105, 1268-1275.	0.2	15
49	Hormone receptor gradients supporting directional Ca2+ signals: direct evidence in rat hepatocytes. Journal of Hepatology, 2003, 39, 489-495.	1.8	14
50	Mitochondrial Ca ²⁺ dynamics in cells and suspensions. FEBS Journal, 2017, 284, 4128-4142.	2.2	13
51	Role of Sigma-1 Receptor in Calcium Modulation: Possible Involvement in Cancer. Genes, 2021, 12, 139.	1.0	12
52	Cholestatic bile acids inhibit gap junction permeability in rat hepatocyte couplets and normal rat cholangiocytes. Journal of Hepatology, 2005, 42, 244-251.	1.8	11
53	Phospholipidic second messengers and calcium. Biochimie, 1987, 69, 281-286.	1.3	10
54	A new hemostatic agent composed of Zn2+-enriched Ca2+ alginate activates vascular endothelial cells in vitro and promotes tissue repair in vivo. Bioactive Materials, 2022, 18, 368-382.	8.6	10

LAURENT COMBETTES

#	Article	IF	CITATIONS
55	Visualization of Cell Surface Vasopressin V1a Receptors in Rat Hepatocytes with a Fluorescent Linear Antagonist. Journal of Histochemistry and Cytochemistry, 1999, 47, 401-409.	1.3	9
56	Inducible Nitric-oxide Synthase Attenuates Vasopressin-dependent Ca2+ Signaling in Rat Hepatocytes. Journal of Biological Chemistry, 2002, 277, 33776-33782.	1.6	8
57	Selective permeabilization of the endoplasmic reticulum by monohydroxylated bile acids in liver. Hepatology, 1989, 9, 663-665.	3.6	5
58	Sigma 1 Receptor is Overexpressed in Hepatocellular Adenoma: Involvement of ERα and HNF1α. Cancers, 2020, 12, 2213.	1.7	4
59	Intercellular Calcium Signaling in "Non-Excitable―Cells. , 2000, , 95-108.		2
60	Nitric Oxide as a Calcium Wave Accelerator. Hepatology, 2003, 32, 156-157.	3.6	1
61	Imaging Ca ²⁺ Responses During Shigella Infection of Epithelial Cells. Journal of Visualized Experiments, 2018, , .	0.2	0