
Evgeny Berdyshev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3054218/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	GFI1-Dependent Repression of SGPP1 Increases Multiple Myeloma Cell Survival. Cancers, 2022, 14, 772.	3.7	5
2	Signaling sphingolipids are biomarkers for atopic dermatitis prone to disseminated viral infections. Journal of Allergy and Clinical Immunology, 2022, 150, 640-648.	2.9	8
3	Unique skin abnormality in patients with peanut allergy but no atopic dermatitis. Journal of Allergy and Clinical Immunology, 2021, 147, 361-367.e1.	2.9	11
4	Ceramide and sphingosine-1 phosphate in COPD lungs. Thorax, 2021, 76, 821-825.	5.6	15
5	Particulate matter causes skin barrier dysfunction. JCI Insight, 2021, 6, .	5.0	51
6	Sphingosine 1 Phosphate (S1P) Receptor 1 Is Decreased in Human Lung Microvascular Endothelial Cells of Smokers and Mediates S1P Effect on Autophagy. Cells, 2021, 10, 1200.	4.1	8
7	Nuclear Sphingosine-1-phosphate Lyase Generated â^†2-hexadecenal is A Regulator of HDAC Activity and Chromatin Remodeling in Lung Epithelial Cells. Cell Biochemistry and Biophysics, 2021, 79, 575-592.	1.8	10
8	Methodological Considerations for Lipid and Polar Component Analyses in Human Skin Stratum Corneum. Cell Biochemistry and Biophysics, 2021, 79, 659-668.	1.8	8
9	Olive oil is for eating and not skin moisturization. Journal of Allergy and Clinical Immunology, 2021, 148, 652.	2.9	2
10	Hyperlinear palms as a clinical finding in peanut allergy. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2823-2825.	3.8	2
11	Type II Natural Killer T Cells Contribute to Protection Against Systemic Methicillin-Resistant Staphylococcus aureus Infection. Frontiers in Immunology, 2020, 11, 610010.	4.8	8
12	Neonatal therapy with PF543, a sphingosine kinase 1 inhibitor, ameliorates hyperoxia-induced airway remodeling in a murine model of bronchopulmonary dysplasia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L497-L512.	2.9	19
13	Impairment of Flow-Sensitive Inwardly Rectifying K ⁺ Channels via Disruption of Glycocalyx Mediates Obesity-Induced Endothelial Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e240-e255.	2.4	30
14	Skin tape proteomics identifies pathways associated with transepidermal water loss and allergen polysensitization in atopic dermatitis. Journal of Allergy and Clinical Immunology, 2020, 146, 1367-1378.	2.9	30
15	Cutaneous barrier dysfunction in allergic diseases. Journal of Allergy and Clinical Immunology, 2020, 145, 1485-1497.	2.9	94
16	Association of atopic dermatitis and suicide: more than a coincidence?. Annals of Allergy, Asthma and Immunology, 2020, 125, 4-5.	1.0	3
17	Group 1 CD1-restricted T cells contribute to control of systemic Staphylococcus aureus infection. PLoS Pathogens, 2020, 16, e1008443.	4.7	11
18	IGSF3 mutation identified in patient with severe COPD alters cell function and motility. JCI Insight, 2020, 5, .	5.0	4

Evgeny Berdyshev

#	Article	IF	CITATIONS
19	Role of Glucosylceramide in Lung Endothelial Cell Fate and Emphysema. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1113-1125.	5.6	19
20	<i>Pseudomonas aeruginosa</i> stimulates nuclear sphingosine-1-phosphate generation and epigenetic regulation of lung inflammatory injury. Thorax, 2019, 74, 579-591.	5.6	38
21	The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Science Translational Medicine, 2019, 11, .	12.4	159
22	Epithelial barrier repair and prevention of allergy. Journal of Clinical Investigation, 2019, 129, 1463-1474.	8.2	137
23	GFI1-Dependent SGPP1 Repression Promotes Growth and Survival of Myeloma Cells. Blood, 2019, 134, 4387-4387.	1.4	Ο
24	Inhibition of acid sphingomyelinase disrupts LYNUS signaling and triggers autophagy. Journal of Lipid Research, 2018, 59, 596-606.	4.2	27
25	Proatherogenic Flow Increases Endothelial Stiffness via Enhanced CD36-Mediated Uptake of Oxidized Low-Density Lipoproteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 64-75.	2.4	37
26	Sphingolipid regulation of lung epithelial cell mitophagy and necroptosis during cigarette smoke exposure. FASEB Journal, 2018, 32, 1880-1890.	0.5	59
27	Bioactive Sphingolipids in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2018, 15, S249-S252.	3.2	18
28	Sphingolipids in Ventilator Induced Lung Injury: Role of Sphingosine-1-Phosphate Lyase. International Journal of Molecular Sciences, 2018, 19, 114.	4.1	26
29	Lipid abnormalities in atopic skin are driven by type 2 cytokines. JCI Insight, 2018, 3, .	5.0	172
30	Anti-Inflammatory Effects of OxPAPC Involve Endothelial Cell–Mediated Generation of LXA4. Circulation Research, 2017, 121, 244-257.	4.5	37
31	Hyperoxia-induced p47 ^{<i>phox</i>} activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P _{1&2} signaling axis in lung endothelium. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L337-L351.	2.9	33
32	Autotaxin activity increases locally following lung injury, but is not required for pulmonary lysophosphatidic acid production or fibrosis. FASEB Journal, 2016, 30, 2435-2450.	0.5	38
33	Role of Sphingosine Kinase 1 and S1P Transporter Spns2 in HGF-mediated Lamellipodia Formation in Lung Endothelium. Journal of Biological Chemistry, 2016, 291, 27187-27203.	3.4	32
34	Ceramide Signaling and Metabolism in Pathophysiological States of the Lung. Annual Review of Physiology, 2016, 78, 463-480.	13.1	55
35	Oxidized LDL signals through Rho-GTPase to induce endothelial cell stiffening and promote capillary formation. Journal of Lipid Research, 2016, 57, 791-808.	4.2	44
36	Polyunsaturated lysophosphatidic acid as a potential asthma biomarker. Biomarkers in Medicine, 2016, 10, 123-135.	1.4	37

Evgeny Berdyshev

#	Article	IF	CITATIONS
37	Space radiation-associated lung injury in a murine model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L416-L428.	2.9	36
38	Sphingosine-1-phosphate lyase is an endogenous suppressor of pulmonary fibrosis: role of S1P signalling and autophagy. Thorax, 2015, 70, 1138-1148.	5.6	62
39	The Sphingosine Kinase 1/Sphingosine-1-Phosphate Pathway in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1032-1043.	5.6	112
40	Targeting sphingosine kinase 1 attenuates bleomycinâ€induced pulmonary fibrosis. FASEB Journal, 2013, 27, 1749-1760.	0.5	83
41	Sphingosine Kinase 1 Deficiency Confers Protection against Hyperoxia-Induced Bronchopulmonary Dysplasia in a Murine Model. American Journal of Pathology, 2013, 183, 1169-1182.	3.8	48
42	Sphingosine-1–Phosphate, FTY720, and Sphingosine-1–Phosphate Receptors in the Pathobiology of Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 6-17.	2.9	127
43	The Roles of Sphingosine Kinase 1 and 2 in Regulating the Metabolome and Survival of Prostate Cancer Cells. Biomolecules, 2013, 3, 316-333.	4.0	13
44	Neutral sphingomyelinase 2 deficiency is associated with lung anomalies similar to emphysema. Mammalian Genome, 2012, 23, 758-763.	2.2	12
45	Inhibition of serine palmitoyltransferase delays the onset of radiation-induced pulmonary fibrosis through the negative regulation of sphingosine kinase-1 expression. Journal of Lipid Research, 2012, 53, 1553-1568.	4.2	43
46	Characterization of sphingosine-1-phosphate lyase activity by electrospray ionization–liquid chromatography/tandem mass spectrometry quantitation of (2E)-hexadecenal. Analytical Biochemistry, 2011, 408, 12-18.	2.4	37
47	Role of sphingolipids in murine radiationâ€induced lung injury: protection by sphingosine 1â€phosphate analogs. FASEB Journal, 2011, 25, 3388-3400.	0.5	57
48	Protection of LPS-Induced Murine Acute Lung Injury by Sphingosine-1-Phosphate Lyase Suppression. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 426-435.	2.9	110
49	Intracellular S1P Generation Is Essential for S1P-Induced Motility of Human Lung Endothelial Cells: Role of Sphingosine Kinase 1 and S1P Lyase. PLoS ONE, 2011, 6, e16571.	2.5	49
50	Stimulation of Sphingosine 1-Phosphate Signaling as an Alveolar Cell Survival Strategy in Emphysema. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 344-352.	5.6	68
51	CFTR Regulation of Intracellular pH and Ceramides Is Required for Lung Endothelial Cell Apoptosis. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 314-323.	2.9	45
52	Superoxide dismutase protects against apoptosis and alveolar enlargement induced by ceramide. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L44-L53.	2.9	86
53	Apoptotic Sphingolipid Signaling by Ceramides in Lung Endothelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 639-646.	2.9	61
54	De novo biosynthesis of dihydrosphingosine-1-phosphate by sphingosine kinase 1 in mammalian cells. Cellular Signalling, 2006, 18, 1779-1792.	3.6	83

#	Article	IF	CITATIONS
55	9 A NOVEL ROLE OF SPHINGOSINE KINASE 1 IN THE DE NOVO BIOSYNTHESIS OF DIHYDROSPHINGOSINE-1-PHOSPHATE IN MAMMALIAN CELLS Journal of Investigative Medicine, 2006, 54, S345.3-S345.	1.6	Ο
56	Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nature Medicine, 2005, 11, 491-498.	30.7	471
57	Quantitative analysis of sphingoid base-1-phosphates as bisacetylated derivatives by liquid chromatography–tandem mass spectrometry. Analytical Biochemistry, 2005, 339, 129-136.	2.4	125