List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3053304/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Photoexcitation of Borate Enabling Minisci Reaction. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	8
2	Molecular Field Analysis Using Computational-Screening Data in Asymmetric <i>N</i> -Heterocyclic Carbene-Copper Catalysis toward Data-Driven <i>In Silico</i> Catalyst Optimization. Bulletin of the Chemical Society of Japan, 2022, 95, 271-277.	3.2	7
3	Reductive Crossâ€Coupling between Arylaldehydes and (Hetero)aryl Electrophiles Using Silylboronate Reductant. European Journal of Organic Chemistry, 2022, 2022, .	2.4	0
4	A Triple Photoredox/Cobalt/BrĄ̃nsted Acid Catalysis Enabling Markovnikov Hydroalkoxylation of Unactivated Alkenes. Journal of the American Chemical Society, 2022, 144, 7953-7959.	13.7	43
5	Organophotoredox-catalyzed semipinacol rearrangement via radical-polar crossover. Nature Communications, 2022, 13, 2684.	12.8	18
6	Direct Photoexcitable lodomethylborate Enabling Cyclopropanation of Reactive Alkenes. Bulletin of the Chemical Society of Japan, 2022, 95, 1001-1005.	3.2	2
7	Organic Photoredox-Catalyzed Silyl Radical Generation from Silylboronate. ACS Catalysis, 2022, 12, 7804-7810.	11.2	49
8	(Invited, Digital Presentation) Carbocation Generation By Organophotoredox Catalyzed Radical-Polar Crossover. ECS Meeting Abstracts, 2022, MA2022-01, 913-913.	0.0	0
9	Copper-Catalyzed Reactions of Alkylboranes. Bulletin of the Chemical Society of Japan, 2021, 94, 197-203.	3.2	3
10	Organophotoredox-Catalyzed Three-Component Coupling of Heteroatom Nucleophiles, Alkenes, and Aliphatic Redox Active Esters. Organic Letters, 2021, 23, 1798-1803.	4.6	43
11	Catalytic Reductive Crossâ€Coupling between Aromatic Aldehydes and AryInitriles. Chemistry - A European Journal, 2021, 27, 7094-7098.	3.3	5
12	Synthesis of Sterically Hindered α-Hydroxycarbonyls through Radical–Radical Coupling. Organic Letters, 2021, 23, 4420-4425.	4.6	21
13	Fluorescent-Oxaboroles: Synthesis and Optical Property by Sugar Recognition. Chemical and Pharmaceutical Bulletin, 2021, 69, 526-528.	1.3	2
14	Decarboxylative N-Alkylation of Azoles through Visible-Light-Mediated Organophotoredox Catalysis. Organic Letters, 2021, 23, 5415-5419.	4.6	37
15	Aryl radical-mediated N-heterocyclic carbene catalysis. Nature Communications, 2021, 12, 3848.	12.8	104
16	Organophotoredox atalyzed Decarboxylative Nâ€Alkylation of Sulfonamides. ChemCatChem, 2021, 13, 3930-3933.	3.7	13
17	Generation of Functionalized Alkyl Radicals via the Direct Photoexcitation of 2,2′-(Pyridine-2,6-diyl)diphenol-Based Borates. Organic Letters, 2021, 23, 5865-5870.	4.6	21
18	Radical N-heterocyclic carbene catalysis for β-ketocarbonyl synthesis. Tetrahedron, 2021, 91, 132212.	1.9	28

#	Article	IF	CITATIONS
19	Radical Relay Trichloromethylacylation of Alkenes through N-Heterocyclic Carbene Catalysis. Organic Letters, 2021, 23, 7242-7247.	4.6	53
20	Direct excitation strategy for radical generation in organic synthesis. Chemical Society Reviews, 2021, 50, 6320-6332.	38.1	103
21	Light-Driven <i>N</i> -Heterocyclic Carbene Catalysis Using Alkylborates. ACS Catalysis, 2021, 11, 12886-12892.	11.2	67
22	Carbocation Generation by Organophotoredox Catalysis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 1005-1012.	0.1	1
23	Copper-Catalyzed Enantioselective Reductive Cross-Coupling of Aldehydes and Imines. Organic Letters, 2020, 22, 800-803.	4.6	17
24	Organophotoredox-Catalyzed Decarboxylative C(sp ³)–O Bond Formation. Journal of the American Chemical Society, 2020, 142, 1211-1216.	13.7	106
25	Direct Synthesis of Dialkyl Ketones from Aliphatic Aldehydes through Radical <i>N</i> -Heterocyclic Carbene Catalysis. ACS Catalysis, 2020, 10, 8524-8529.	11.2	96
26	Boracene-based alkylborate enabled Ni/Ir hybrid catalysis. Organic and Biomolecular Chemistry, 2020, 18, 6598-6601.	2.8	11
27	Transitionâ€Metalâ€Free Crossâ€Coupling by Using Tertiary Benzylic Organoboronates. Angewandte Chemie - International Edition, 2020, 59, 22460-22464.	13.8	24
28	Transitionâ€Metalâ€Free Crossâ€Coupling by Using Tertiary Benzylic Organoboronates. Angewandte Chemie, 2020, 132, 22646-22650.	2.0	5
29	Recent advances in N-heterocyclic carbene-based radical catalysis. Chemical Science, 2020, 11, 5630-5636.	7.4	224
30	Generation of Alkyl Radical through Direct Excitation of Boracene-Based Alkylborate. Journal of the American Chemical Society, 2020, 142, 9938-9943.	13.7	69
31	Tertiary Alkylations of Aldehydes, Ketones or Imines Using Benzylic Organoboronates and a Base Catalyst. Bulletin of the Chemical Society of Japan, 2020, 93, 1065-1069.	3.2	4
32	Reductive umpolung for asymmetric synthesis of chiral α-allenic alcohols. Chemical Communications, 2020, 56, 7471-7474.	4.1	13
33	N-Heterocyclic Carbene-Based Catalysis Enabling Cross-Coupling Reactions. ACS Catalysis, 2020, 10, 6862-6869.	11.2	213
34	Allylic cross-coupling using aromatic aldehydes as α-alkoxyalkyl anions. Beilstein Journal of Organic Chemistry, 2020, 16, 185-189.	2.2	9
35	N-Heterocyclic Carbene-Catalyzed Radical Relay Enabling Synthesis of δ-Ketocarbonyls. Organic Letters, 2020, 22, 3922-3925.	4.6	79
36	Aliphatic Oxaboroles Enabling Remarkable Recognition of Diols. Bulletin of the Chemical Society of Japan, 2020, 93, 576-580.	3.2	5

#	Article	IF	CITATIONS
37	5 anti Boron Addition to Alkynes. , 2020, , .		Ο
38	Memoirs of a Young PI. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 732-734.	0.1	0
39	<i>N</i> -Heterocyclic Carbene-Catalyzed Radical Relay Enabling Vicinal Alkylacylation of Alkenes. Journal of the American Chemical Society, 2019, 141, 14073-14077.	13.7	198
40	Synergistic Nâ€Heterocyclic Carbene/Palladiumâ€Catalyzed Aldehyde Acylation of Allylic Amines. Asian Journal of Organic Chemistry, 2019, 8, 1133-1135.	2.7	22
41	Synergistic <i>N</i> -Heterocyclic Carbene/Palladium-Catalyzed Allylation of Aldehydes with Allylic Carbonates. Bulletin of the Chemical Society of Japan, 2019, 92, 937-940.	3.2	18
42	Asymmetric Synthesis of α-Alkylidene-β-Lactams through Copper Catalysis with a Prolinol-Phosphine Chiral Ligand. Organic Letters, 2019, 21, 1717-1721.	4.6	16
43	<i>N</i> -Heterocyclic Carbene-Catalyzed Decarboxylative Alkylation of Aldehydes. Journal of the American Chemical Society, 2019, 141, 3854-3858.	13.7	226
44	N-Heterocyclic Carbene (NHC)/Metal Cooperative Catalysis. Topics in Current Chemistry, 2019, 377, 35.	5.8	44
45	Dehydrative Allylation between Aldehydes and Allylic Alcohols through Synergistic Nâ€Heterocyclic Carbene/Palladium Catalysis. Chemistry - A European Journal, 2019, 25, 660-660.	3.3	2
46	Asymmetric Catalysis Using Aromatic Aldehydes as Chiral α-Alkoxyalkyl Anions. Journal of the American Chemical Society, 2019, 141, 113-117.	13.7	60
47	Reductive Coupling between Aromatic Aldehydes and Ketones or Imines by Copper Catalysis. Journal of the American Chemical Society, 2019, 141, 3664-3669.	13.7	37
48	Dehydrative Allylation between Aldehydes and Allylic Alcohols through Synergistic Nâ€Heterocyclic Carbene/Palladium Catalysis. Chemistry - A European Journal, 2019, 25, 724-727.	3.3	48
49	Copper-catalyzed Enantioselective Intramolecular Alkylboron Allylic Alkylation. Chemistry Letters, 2018, 47, 632-635.	1.3	6
50	Phosphine-Catalyzed <i>Anti</i> -Hydroboration of Internal Alkynes. Organic Letters, 2018, 20, 1861-1865.	4.6	73
51	Enantiocontrol by assembled attractive interactions in copper-catalyzed asymmetric direct alkynylation of α-ketoesters with terminal alkynes: OHâ <o sp<sup="">3-CHâ<o hydrogen<br="" two-point="">bonding combined with dispersive attractions. Chemical Science, 2018, 9, 3484-3493.</o></o>	7.4	43
52	Synergistic palladium/copper-catalyzed Csp ³ –Csp ² cross-couplings using aldehydes as latent α-alkoxyalkyl anion equivalents. Chemical Communications, 2018, 54, 6776-6779.	4.1	28
53	Phosphineâ€Catalyzed <i>anti</i> â€Carboboration of Alkynoates with 9â€BBNâ€Based 1,1â€Diborylalkanes: Synthesis and Use of Multisubstituted γâ€Borylallylboranes. Angewandte Chemie - International Edition, 2018, 57, 3196-3199.	13.8	42
54	Synergistic Nâ€Heterocyclic Carbene/Palladiumâ€Catalyzed Reactions of Aldehyde Acyl Anions with either Diarylmethyl or Allylic Carbonates. Angewandte Chemie - International Edition, 2018, 57, 2938-2942.	13.8	63

#	Article	IF	CITATIONS
55	Phosphineâ€Catalyzed <i>anti</i> â€Carboboration of Alkynoates with 9â€BBNâ€Based 1,1â€Diborylalkanes: Synthesis and Use of Multisubstituted γâ€Borylallylboranes. Angewandte Chemie, 2018, 130, 3250-3253.	2.0	15
56	Synergistic Nâ€Heterocyclic Carbene/Palladium atalyzed Reactions of Aldehyde Acyl Anions with either Diarylmethyl or Allylic Carbonates. Angewandte Chemie, 2018, 130, 2988-2992.	2.0	20
57	Copper-Catalyzed Enantioselective Coupling between AllylÂboronates and Phosphates Using a Phenol–Carbene Chiral Ligand: Asymmetric Synthesis of Chiral Branched 1,5-Dienes. Synthesis, 2018, 50, 2235-2246.	2.3	11
58	Synthesis of α-Quaternary Formimides and Aldehydes through Umpolung Asymmetric Copper Catalysis with Isocyanides. Journal of the American Chemical Society, 2017, 139, 2184-2187.	13.7	57
59	Asymmetric Synthesis of βâ€Lactams through Copperâ€Catalyzed Alkyne–Nitrone Coupling with a Prolinol–Phosphine Chiral Ligand. Chemistry - A European Journal, 2017, 23, 8400-8404.	3.3	35
60	Construction of Quaternary Stereogenic Carbon Centers through Copper atalyzed Enantioselective Allylic Alkylation of Azoles. Angewandte Chemie, 2016, 128, 4855-4858.	2.0	20
61	Copper atalyzed Enantioselective Allyl–Allyl Coupling between Allylic Boronates and Phosphates with a Phenol/Nâ€Heterocyclic Carbene Chiral Ligand. Angewandte Chemie - International Edition, 2016, 55, 10816-10820.	13.8	68
62	Copperâ€Catalyzed Enantioselective Allyl–Allyl Coupling between Allylic Boronates and Phosphates with a Phenol/Nâ€Heterocyclic Carbene Chiral Ligand. Angewandte Chemie, 2016, 128, 10974-10978.	2.0	14
63	Construction of Quaternary Stereogenic Carbon Centers through Copperâ€Catalyzed Enantioselective Allylic Alkylation of Azoles. Angewandte Chemie - International Edition, 2016, 55, 4777-4780.	13.8	65
64	Copper-Catalyzed Semihydrogenation of Internal Alkynes with Molecular Hydrogen. Organometallics, 2016, 35, 1354-1357.	2.3	60
65	Phosphine-Catalyzed Vicinal Acylcyanation of Alkynoates. Organic Letters, 2016, 18, 1706-1709.	4.6	26
66	Synthesis of 1,1â€Diborylalkenes through a BrÃ,nsted Base Catalyzed Reaction between Terminal Alkynes and Bis(pinacolato)diboron. Angewandte Chemie - International Édition, 2015, 54, 15859-15862.	13.8	85
67	Copperâ€Catalyzed γâ€Selective and Stereospecific Allylic Crossâ€Coupling with Secondary Alkylboranes. Chemistry - A European Journal, 2015, 21, 9666-9670.	3.3	15
68	Copper-catalyzed stereoselective conjugate addition of alkylboranes to alkynoates. Beilstein Journal of Organic Chemistry, 2015, 11, 2444-2450.	2.2	9
69	<i>Anti</i> -Selective Vicinal Silaboration and Diboration of Alkynoates through Phosphine Organocatalysis. Organic Letters, 2015, 17, 1304-1307.	4.6	124
70	Copper-catalyzed enantioselective allylic cross-coupling with alkylboranes. Tetrahedron, 2015, 71, 6519-6533.	1.9	14
71	Copper(I)-Catalyzed Intramolecular Hydroalkoxylation of Unactivated Alkenes. Organic Letters, 2015, 17, 2039-2041.	4.6	51
72	Silica-Supported Triptycene-Type Phosphine. Synthesis, Characterization, and Application to Pd-Catalyzed Suzuki–Miyaura Cross-Coupling of Chloroarenes. ACS Catalysis, 2015, 5, 7254-7264.	11.2	27

#	Article	IF	CITATIONS
73	Copper-Catalyzed Allylic Substitution and Conjugate Addition with Alkylboranes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 1207-1217.	0.1	3
74	Phosphine-Catalyzed <i>Anti</i> -Carboboration of Alkynoates with Alkyl-, Alkenyl-, and Arylboranes. Journal of the American Chemical Society, 2014, 136, 10605-10608.	13.7	83
75	Copper-Catalyzed Enantioselective Allylic Alkylation of Terminal Alkyne Pronucleophiles. Journal of the American Chemical Society, 2014, 136, 13932-13939.	13.7	94
76	Construction of Quaternary Stereogenic Carbon Centers through Copper atalyzed Enantioselective Allylic Cross oupling with Alkylboranes. Angewandte Chemie - International Edition, 2014, 53, 4954-4958.	13.8	64
77	Synthesis of Trisubstituted Alkenylstannanes through Copperâ€Catalyzed Threeâ€Component Coupling of Alkylboranes, Alkynoates, and Tributyltin Methoxide. Angewandte Chemie - International Edition, 2013, 52, 11620-11623.	13.8	22
78	Cooperative Catalysis of Metal and OHâ‹â‹0/sp ³ â€CHâ‹â‹O Twoâ€Point Hydrog Alcoholic Solvents: Cuâ€Catalyzed Enantioselective Direct Alkynylation of Aldehydes with Terminal Alkynes. Chemistry - A European Journal, 2013, 19, 13547-13553.		n 45
79	Copperâ€Catalyzed γâ€Selective and Stereospecific Direct Allylic Alkylation of Terminal Alkynes: Synthesis of Skipped Enynes. Angewandte Chemie - International Edition, 2013, 52, 5350-5354.	13.8	54
80	Use of a Semihollowâ€Shaped Triethynylphosphane Ligand for Efficient Formation of Six―and Sevenâ€Membered Ring Ethers through Gold(l)â€Catalyzed Cyclization of Hydroxyâ€Tethered Propargylic Esters. Advanced Synthesis and Catalysis, 2013, 355, 647-652.	4.3	21
81	Efficient Preparation of β-Branched γ,δ-Unsaturated Esters through Copper-Catalyzed Allylic Alkylation of Ketene Silyl Acetal. Synthesis, 2012, 44, 1304-1307.	2.3	5
82	Functional Group Tolerable Synthesis of Allylsilanes through Copper-Catalyzed Î ³ -Selective Allyl-Alkyl Coupling between Allylic Phosphates and Alkylboranes. Synthesis, 2012, 44, 1535-1541.	2.3	15
83	Conjugate Reduction of α,βâ€Unsaturated Carbonyl and Carboxyl Compounds with Poly(methylhydrosiloxane) Catalyzed by a Silicaâ€Supported Compact Phosphane–Copper Complex. Advanced Synthesis and Catalysis, 2012, 354, 3440-3444.	4.3	11
84	Copper-Catalyzed Enantioselective Allylic Substitution with Alkylboranes. Journal of the American Chemical Society, 2012, 134, 18573-18576.	13.7	90
85	Synthesis of Allenylsilanes through Copper-Catalyzed Î ³ -Selective Coupling between Î ³ -Silylated Propargylic Phosphates and Alkylboranes. Organometallics, 2012, 31, 7909-7913.	2.3	25
86	Synthesis of Conjugated Allenes through Copper-Catalyzed Î ³ -Selective and Stereospecific Coupling between Propargylic Phosphates and Aryl- or Alkenylboronates. Organic Letters, 2012, 14, 816-819.	4.6	96
87	Reversible 1,3-anti/syn-Stereochemical Courses in Copper-Catalyzed γ-Selective Allyl–Alkyl Coupling between Chiral Allylic Phosphates and Alkylboranes. Journal of the American Chemical Society, 2012, 134, 8982-8987.	13.7	68
88	Enantioselective Conjugate Addition of Alkylboranes Catalyzed by a Copper– <i>N</i> -Heterocyclic Carbene Complex. Journal of the American Chemical Society, 2012, 134, 11896-11899.	13.7	96
89	Regio―and Stereocontrolled Introduction of Secondary Alkyl Groups to Electronâ€Deficient Arenes through Copperâ€Catalyzed Allylic Alkylation. Angewandte Chemie - International Edition, 2012, 51, 4122-4127.	13.8	120
90	Rh-Catalyzed Borylation of N-Adjacent C(sp ³)–H Bonds with a Silica-Supported Triarylphosphine Ligand. Journal of the American Chemical Society, 2012, 134, 12924-12927.	13.7	158

#	Article	IF	CITATIONS
91	Copper-Catalyzed Î ³ -Selective and Stereospecific Allylic Alkylation of Ketene Silyl Acetals. Journal of the American Chemical Society, 2011, 133, 5672-5675.	13.7	32
92	General Approach to Allenes through Copper-Catalyzed \hat{I}^3 -Selective and Stereospecific Coupling between Propargylic Phosphates and Alkylboranes. Organic Letters, 2011, 13, 6312-6315.	4.6	100
93	Copper-Catalyzed Conjugate Additions of Alkylboranes to Imidazolyl α,β-Unsaturated Ketones: Formal Reductive Conjugate Addition of Terminal Alkenes. Organic Letters, 2011, 13, 482-485.	4.6	41
94	Copper-Catalyzed Carboxylation of Alkylboranes with Carbon Dioxide: Formal Reductive Carboxylation of Terminal Alkenes. Organic Letters, 2011, 13, 1086-1088.	4.6	124
95	Sulfonamidoquinoline/Palladium(II)â€Dimer Complex As a Catalyst Precursor for Palladiumâ€Catalyzed γâ€5elective and Stereospecific Allyl–Aryl Coupling Reaction between Allylic Acetates and Arylboronic Acids. Chemistry - an Asian Journal, 2011, 6, 410-414.	3.3	38
96	Rh-Catalyzed <i>Ortho</i> -Selective C–H Borylation of <i>N</i> -Functionalized Arenes with Silica-Supported Bridgehead Monophosphine Ligands. Journal of the American Chemical Society, 2011, 133, 19310-19313.	13.7	160
97	Intramolecular hydroamination of alkynic sulfonamides catalyzed by a gold–triethynylphosphine complex: Construction of azepine frameworks by 7- <i>exo</i> - <i>dig</i> cyclization. Beilstein Journal of Organic Chemistry, 2011, 7, 951-959.	2.2	39
98	Copper-catalyzed Conjugate Additions of Alkylboranes to Aryl α,β-Unsaturated Ketones. Chemistry Letters, 2011, 40, 928-930.	1.3	23
99	Palladium atalyzed Borylation of Sterically Demanding Aryl Halides with a Silica‧upported Compact Phosphane Ligand. Angewandte Chemie - International Edition, 2011, 50, 8363-8366.	13.8	96
100	Protecting-Group-Free Route to Hydroxylated Pyrrolidine and Piperidine Derivatives through Cu(l)-Catalyzed Intramolecular Hydroamination of Alkenes. Synlett, 2010, 2010, 2136-2140.	1.8	5
101	Construction of Methylenecycloheptane Frameworks through 7 <i>-Exo-Dig</i> Cyclization of Acetylenic Silyl Enol Ethers Catalyzed by Triethynylphosphineâ^Gold Complex. Organic Letters, 2010, 12, 4380-4383.	4.6	59
102	Palladium-Catalyzed γ-Selective and Stereospecific Allylâ^'Aryl Coupling between Acyclic Allylic Esters and Arylboronic Acids. Journal of the American Chemical Society, 2010, 132, 879-889.	13.7	140
103	Copper-Catalyzed γ-Selective Allylâ^'Alkyl Coupling between Allylic Phosphates and Alkylboranes. Journal of the American Chemical Society, 2010, 132, 2895-2897.	13.7	106
104	Synthesis of α-Arylated Allylsilanes through Palladium-Catalyzed Î ³ -Selective Allylâ^'Aryl Coupling. Organic Letters, 2010, 12, 3344-3347.	4.6	62
105	Ester-Directed Regioselective Borylation of Heteroarenes Catalyzed by a Silica-Supported Iridium Complex. Journal of Organic Chemistry, 2010, 75, 3855-3858.	3.2	91
106	Selective Synthesis of Allenes and Alkynes through Ligand-Controlled, Palladium-Catalyzed Decarboxylative Hydrogenolysis of Propargylic Formates. Organic Letters, 2010, 12, 1796-1799.	4.6	29
107	Copper-Catalyzed γ-Selective and Stereospecific Allyl−Aryl Coupling between (<i>Z</i>)-Acyclic and Cyclic Allylic Phosphates and Arylboronates. Organic Letters, 2010, 12, 2438-2440.	4.6	89
108	Directed Ortho Borylation of Phenol Derivatives Catalyzed by a Silica-Supported Iridium Complex. Organic Letters, 2010, 12, 3978-3981.	4.6	121

#	Article	IF	CITATIONS
109	General and Functional Group-Tolerable Approach to Allenylsilanes by Rhodium-Catalyzed Coupling between Propargylic Carbonates and a Silylboronate. Organic Letters, 2009, 11, 5618-5620.	4.6	71
110	Directed Ortho Borylation of Functionalized Arenes Catalyzed by a Silica-Supported Compact Phosphineâ~'Iridium System. Journal of the American Chemical Society, 2009, 131, 5058-5059.	13.7	273
111	Cu(I)-Catalyzed Intramolecular Hydroamination of Unactivated Alkenes Bearing a Primary or Secondary Amino Group in Alcoholic Solvents. Organic Letters, 2009, 11, 2145-2147.	4.6	113
112	αâ€Olefins as Alkenylmetal Equivalents in Catalytic Conjugate Addition Reactions. Angewandte Chemie - International Edition, 2008, 47, 1893-1895.	13.8	71
113	Generation of rhodium enolates via retro-aldol reaction and its application to regioselective aldol reaction. Tetrahedron Letters, 2008, 49, 2388-2390.	1.4	22
114	Synthesis of Silica-Supported Compact Phosphines and Their Application to Rhodium-Catalyzed Hydrosilylation of Hindered Ketones with Triorganosilanes. Organometallics, 2008, 27, 6495-6506.	2.3	47
115	Palladium-Catalyzed γ-Selective and Stereospecific Allylâ^'Aryl Coupling between Allylic Acetates and Arylboronic Acids. Journal of the American Chemical Society, 2008, 130, 17276-17277.	13.7	147
116	Cobalt-Catalyzed Regioselective Dehydrohalogenation of Alkyl Halides with Dimethylphenylsilylmethylmagnesium Chloride. Journal of the American Chemical Society, 2008, 130, 11276-11277.	13.7	74
117	Cyclization of Nonterminal Alkynic β-Keto Esters Catalyzed by Gold(I) Complex with a Semihollow, End-Capped Triethynylphosphine Ligand. Organic Letters, 2008, 10, 5051-5054.	4.6	61
118	Hydrogenation of Hindered Ketones Catalyzed by a Silica-Supported Compact Phosphineâ^'Rh System. Organic Letters, 2008, 10, 4697-4700.	4.6	20
119	Synthesis, Properties, and Catalytic Applications of Caged, Compact Trialkylphosphine 4-Phenyl-1-phospha-4-silabicyclo[2.2.2]octane. Organometallics, 2008, 27, 5494-5503.	2.3	31
120	Silver-Catalyzed Benzylation and Allylation Reactions of Tertiary and Secondary Alkyl Halides with Grignard Reagents. Organic Letters, 2008, 10, 969-971.	4.6	80
121	Nickel-catalyzed Carbometalation Reactions of [2-(1-Propynyl)phenyl]methanol with 1-Alkenylmagnesium Reagents. Chemistry Letters, 2007, 36, 1066-1067.	1.3	11
122	Chromium-Catalyzed Arylmagnesiation of Alkynes. Organic Letters, 2007, 9, 1569-1571.	4.6	71
123	N-Heterocyclic Carbene Ligands in Cobalt-Catalyzed Sequential Cyclization/Cross-Coupling Reactions of 6-Halo-1-hexene Derivatives with Grignard Reagents. Organic Letters, 2007, 9, 1565-1567.	4.6	95
124	Cobalt-catalyzed sequential cyclization/cross-coupling reactions of 6-halo-1-hexene derivatives with Grignard reagents and their application to the synthesis of 1,3-diols. Tetrahedron, 2007, 63, 8609-8618.	1.9	46
125	Cobalt(diamine)-Catalyzed Cross-coupling Reaction of Alkyl Halides with Arylmagnesium Reagents:Â Stereoselective Constructions of Arylated Asymmetric Carbons and Application to Total Synthesis of AH13205. Journal of the American Chemical Society, 2006, 128, 1886-1889.	13.7	171
126	Cobalt-Mediated Cross-Coupling Reactions of Primary and Secondary Alkyl Halides with 1-(Trimethylsilyl)ethenyl- and 2-Trimethylsilylethynylmagnesium Reagents. Organic Letters, 2006, 8, 3093-3096.	4.6	141

#	Article	IF	CITATIONS
127	Cobalt-Catalyzed Trimethylsilylmethylmagnesium-Promoted Radical Alkenylation of Alkyl Halides:Â A Complement to the Heck Reaction. Journal of the American Chemical Society, 2006, 128, 8068-8077.	13.7	202
128	Cobalt-catalyzed cross-coupling reactions of alkyl halides with aryl Grignard reagents and their application to sequential radical cyclization/cross-coupling reactions. Tetrahedron, 2006, 62, 2207-2213.	1.9	101
129	A New Approach to 4-Aryl-1,3-butanediols by Cobalt-Catalyzed Sequential Radical Cyclization-Arylation Reaction of Silicon-Tethered 6-lodo-1-hexene Derivatives. Synlett, 2006, 2006, 3061-3064.	1.8	7
130	Cobalt-Catalyzedsyn Hydrophosphination of Alkynes. Angewandte Chemie - International Edition, 2005, 44, 2368-2370.	13.8	66
131	Regio- and Stereoselective Approach to 1,2-Di- and 1,1,2-Trisilylethenes by Cobalt-Mediated Reaction of Silyl-Substituted Dibromomethanes with Silylmethylmagnesium Reagents. Angewandte Chemie - International Edition, 2005, 44, 3488-3490.	13.8	26
132	Cobalt-Catalyzed Cross-Coupling Reaction of Chloropyridines with Grignard Reagents ChemInform, 2005, 36, no.	0.0	0
133	Cobalt-Catalyzed syn Hydrophosphination of Alkynes ChemInform, 2005, 36, no.	0.0	0
134	Regio- and Stereoselective Approach to 1,2-Di- and 1,1,2-Trisilylethenes by Cobalt-Mediated Reaction of Silyl-Substituted Dibromomethanes with Silylmethylmagnesium Reagents ChemInform, 2005, 36, no.	0.0	0
135	Cobalt-Catalyzed Cross-Coupling Reactions of Alkyl Halides with Allylic and Benzylic Grignard Reagents and Their Application to Tandem Radical Cyclization/Cross-Coupling Reactions. Chemistry - A European Journal, 2004, 10, 5640-5648.	3.3	142
136	Cobalt-catalyzed Cross-coupling Reaction of Chloropyridines with Grignard Reagents. Chemistry Letters, 2004, 33, 1240-1241.	1.3	70
137	Novel synthesis of 5-thio-hexopyranoside: preparation of 5-thio-d- and l-glucose and 1,6-anhydro-5-thio-l- and d-altrose. Tetrahedron, 2003, 59, 7011-7022.	1.9	15
138	Studies on stereoselective Sonogashira coupling of 1,1-dibromo-1-alkene. Journal of Organometallic Chemistry, 2002, 653, 141-149.	1.8	51