Heung-Kook Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3052617/publications.pdf

Version: 2024-02-01

623734 580821 66 719 14 25 citations g-index h-index papers 67 67 67 959 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Texture, Morphology, and Statistical Analysis to Differentiate Primary Brain Tumors on Two-Dimensional Magnetic Resonance Imaging Scans Using Artificial Intelligence Techniques. Healthcare Informatics Research, 2022, 28, 46-57.	1.9	4
2	Whole Slide Image Analysis and Detection of Prostate Cancer using Vision Transformers., 2022,,.		12
3	An Explainable Computer Vision in Histopathology: Techniques for Interpreting Black Box Model. , 2022, , .		4
4	Cluster Analysis of Cell Nuclei in H&E-Stained Histological Sections of Prostate Cancer and Classification Based on Traditional and Modern Artificial Intelligence Techniques. Diagnostics, 2022, 12, 15.	2.6	3
5	Diagnosing Alzheimer's Disease Based on Multiclass MRI Scans using Transfer Learning Techniques. Current Medical Imaging, 2021, 17, 1460-1472.	0.8	13
6	Artificial Intelligence Techniques for Prostate Cancer Detection through Dual-Channel Tissue Feature Engineering. Cancers, 2021, 13, 1524.	3.7	10
7	An Efficient Lightweight CNN and Ensemble Machine Learning Classification of Prostate Tissue Using Multilevel Feature Analysis. Applied Sciences (Switzerland), 2020, 10, 8013.	2.5	13
8	A Paradigm Shift in Nuclear Chromatin Interpretation: From Qualitative Intuitive Recognition to Quantitative Texture Analysis of Breast Cancer Cell Nuclei. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 99, 698-706.	1.5	9
9	Convolutional Neural Network-based MR Image Analysis for Alzheimer's Disease Classification. Current Medical Imaging, 2020, 16, 27-35.	0.8	38
10	Quantitative Analysis of Benign and Malignant Tumors in Histopathology: Predicting Prostate Cancer Grading Using SVM. Applied Sciences (Switzerland), 2019, 9, 2969.	2.5	25
11	Multi-Features Classification of Prostate Carcinoma Observed in Histological Sections: Analysis of Wavelet-Based Texture and Colour Features. Cancers, 2019, 11, 1937.	3.7	18
12	Alzheimer's Disease Classification Based on Multi-feature Fusion. Current Medical Imaging, 2019, 15, 161-169.	0.8	21
13	Mapping the Supratentorial Cerebral Arterial Territories Using 1160 Large Artery Infarcts. JAMA Neurology, 2019, 76, 72.	9.0	46
14	One-year Follow-up Study of Hippocampal Subfield Atrophy in Alzheimer's Disease and Normal Aging. Current Medical Imaging, 2019, 15, 699-709.	0.8	11
15	Deep Learning for Alzheimer's Disease Classification using Texture Features. Current Medical Imaging, 2019, 15, 689-698.	0.8	18
16	A Comparative Study of Alzheimer's Disease Classification using Multiple Transfer Learning Models. Journal of Multimedia Information System, 2019, 6, 209-216.	0.6	11
17	Stroke outcomes are worse with larger leukoaraiosis volumes. Brain, 2017, 140, 158-170.	7.6	96
18	Hippocampus Segmentation and Classification in Alzheimer's Disease and Mild Cognitive Impairment Applied on MR Images. Journal of Korea Multimedia Society, 2017, 20, 205-215.	0.2	3

#	Article	IF	Citations
19	Color Image Enhancement Using a Retinex Algorithm with Bilateral Filtering for Images with Poor Illumination. Journal of Korea Multimedia Society, 2016, 19, 233-239.	0.2	4
20	Contrast-enhanced Bias-corrected Distance-regularized Level Set Method Applied to Hippocampus Segmentation. Journal of Korea Multimedia Society, 2016, 19, 1236-1247.	0.2	2
21	Comparison of active contour and fast marching methods of hippocampus segmentation. , 2015, , .		1
22	A Novel Filter ed Bi-Histogram Equalization Method. Journal of Korea Multimedia Society, 2015, 18, 691-700.	0.2	6
23	Design of 3D Visualization Software Tool Based on VTK for Manual Brain Segmentation of MRI. Journal of Korea Multimedia Society, 2015, 18, 120-127.	0.2	0
24	Compar ison of Level Set-based Active Contour Models on Subcor tical Image Segmentation. Journal of Korea Multimedia Society, 2015, 18, 827-833.	0.2	1
25	Grading and Interpretation of White Matter Hyperintensities Using Statistical Maps. Stroke, 2014, 45, 3567-3575.	2.0	54
26	3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading. Computational and Mathematical Methods in Medicine, 2014, 2014, 1-12.	1.3	25
27	Semi-automated Approach to Hippocampus Segmentation Using Snake from Brain MRI. Journal of Korea Multimedia Society, 2014, 17, 566-572.	0.2	2
28	Implementation of 2D Active Shape Model-based Segmentation on Hippocampus. Journal of Korea Multimedia Society, 2014, 17, 1-7.	0.2	1
29	A Study on Oriental Medicine Hybrid Multi-cup Electric Cupping Contents using Vacuum Pressure. Journal of Korea Multimedia Society, 2014, 17, 1363-1373.	0.2	2
30	Implementation of 2D Snake Model-based Segmentation on Corpus Callosum. Journal of Korea Multimedia Society, 2014, 17, 1412-1417.	0.2	1
31	Time Complexity Measurement on CUDA-based GPU Parallel Architecture of Morphology Operation. Journal of Korea Multimedia Society, 2013, 16, 444-452.	0.2	1
32	Comparison of Active Contour and Active Shape Approaches for Corpus Callosum Segmentation. Journal of Korea Multimedia Society, 2013, 16, 1018-1030.	0.2	6
33	Design and Development of Middleware for Clinical Trial System based on Brain MR Image. Journal of Korea Multimedia Society, 2012, 15, 805-813.	0.2	0
34	A Hippocampus Segmentation in Brain MR Images using Level-Set Method. Journal of Korea Multimedia Society, 2012, 15, 1075-1085.	0.2	2
35	Contrast Enhancement for Segmentation of Hippocampus on Brain MR Images. Journal of Korea Multimedia Society, 2012, 15, 1409-1416.	0.2	5
36	Hippocampus Volume Measurement for the determination of MCI. Journal of Korea Multimedia Society, 2012, 15, 1449-1455.	0.2	2

#	Article	IF	Citations
37	Exploring the user requirements for wearable healthcare systems. , 2011, , .		6
38	A New Image-Based Stroke Registry Containing Quantitative Magnetic Resonance Imaging Data. Cerebrovascular Diseases, $2011, 32, 567-576$.	1.7	17
39	Three-dimensional Texture Analysis of Renal Cell Carcinoma Cell Nuclei for Computerized Automatic Grading. Journal of Medical Systems, 2010, 34, 709-716.	3.6	16
40	Image contrast enhancement using bi-histogram equalization with neighborhood metrics. IEEE Transactions on Consumer Electronics, 2010, 56, 2727-2734.	3.6	71
41	Cancer Cell Image Analysis and Visualization. International Journal of E-Health and Medical Communications, 2010, 1, 53-63.	1.6	0
42	Brightness preserving weight clustering histogram equalization. IEEE Transactions on Consumer Electronics, 2008, 54, 1329-1337.	3.6	76
43	Building u-Hospice from UCI Perspectives. , 2007, , .		0
44	Grading of renal cell carcinoma by 3D morphological analysis of cell nuclei. Computers in Biology and Medicine, 2007, 37, 1334-1341.	7.0	26
45	Cell nuclei image classification using three-dimensional texture features. , 2006, , .		0
46	Modeling of myocardial contractility using parameterized super-quadric SPECT images. Computerized Medical Imaging and Graphics, 2006, 30, 43-51.	5.8	0
47	Development of quantification software using model-based segmentation of left ventricular myocardium in gated myocardial SPECT. Computer Methods and Programs in Biomedicine, 2006, 83, 43-49.	4.7	1
48	Development of image processing software for quantitative analysis of bioluminescence image. , 2006, , .		2
49	Multi-Resolution Wavelet-Transformed Image Analysis of Histological Sections of Breast Carcinomas. Analytical Cellular Pathology, 2005, 27, 237-244.	1.4	7
50	Development of Histopathological Breast Tumor Image Retrieval System Based on Internet Using a Content-based Retrieval Method. Journal of Korean Society of Medical Informatics, 2005, 11, 87.	0.3	0
51	Comparison of Two Internet Based Telepathology Systems: CORBA and ActiveX System. Journal of Korean Society of Medical Informatics, 2003, 9, 285.	0.3	0
52	Tele-medical imaging conference system based on the Web. Computer Methods and Programs in Biomedicine, 2002, 68, 223-231.	4.7	6
53	Regional contractility measurement of the left ventricle using gated myocardial SPECT. , 0, , .		2
54	Motility analysis of gated myocardium SPECT images. , 0, , .		О

#	Article	IF	CITATIONS
55	Experimental evaluation of a-Se flat-panel X-ray detector for digital radiography., 0,,.		3
56	A computerized program for three-dimensional visualization and quantitative analysis of cell nuclei. , 0, , .		0
57	Design of the breast carcinoma cell bank system. , 0, , .		1
58	Comparison of thresholding methods for breast tumor cell segmentation. , 0, , .		11
59	Molecular imaging and its tissue analysis. , 0, , .		0
60	Region-position 3D labeling algorithm for three dimensional analysis of cells. , 0, , .		1
61	Classification of breast tissue images based on wavelet transform using discriminant analysis, neural network and SVM. , 0, , .		1
62	Study on texture analysis of renal cell carcinoma nuclei based on the Fuhrman grading system. , 0, , .		2
63	High resolution flat-panel X-ray detector for digital radiography. , 0, , .		0
64	Development of image processing software for quantitative analysis of bioluminescence image. , 0, , .		0
65	Cell nuclei image classification using three-dimensional texture features. , 0, , .		O
66	Cancer Cell Image Analysis and Visualization. , 0, , 233-243.		0