Tsunehiro Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3052080/publications.pdf

Version: 2024-02-01

187 9,088 papers citations

194

all docs

194 194 docs citations times ranked

38742

50

h-index

9977 citing authors

88

g-index

48315

#	Article	IF	CITATIONS
1	Effect of the in situ addition of chromate ions on H2 evolution during the photocatalytic conversion of CO2 using H2O as the electron donor. Catalysis Today, 2023, 410, 273-281.	4.4	1
2	In situ time-resolved XAS study on metal-support-interaction-induced morphology change of PtO2 nanoparticles supported on \hat{l}^3 -Al2O3 under H2 reduction. Catalysis Today, 2022, , .	4.4	3
3	Formation of CH ₄ at the Metalâ€6upport Interface of Pt/Al ₂ O ₃ During Hydrogenation of CO ₂ : <i>Operando</i> XASâ€DRIFTS Study. ChemCatChem, 2022, 14, .	3.7	7
4	Oxygen Storage Capacity of Co-Doped SrTiO ₃ with High Redox Performance. Journal of Physical Chemistry C, 2022, 126, 4415-4422.	3.1	7
5	Dynamic behavior of Pd/Ca2AlMnO5+ \hat{l} for purifying automotive exhaust gases under fluctuating oxygen concentration. Catalysis Today, 2022, , .	4.4	О
6	A theoretical investigation into the role of catalyst support and regioselectivity of molecular adsorption on a metal oxide surface: NO reduction on Cu/\hat{I}^3 -alumina. Physical Chemistry Chemical Physics, 2021, 23, 2575-2585.	2.8	2
7	Identification of hydrogen species on Pt/Al ₂ O ₃ by <i>in situ</i> inelastic neutron scattering and their reactivity with ethylene. Catalysis Science and Technology, 2021, 11, 116-123.	4.1	6
8	Real-time observation of the effect of oxygen storage materials on Pd-based three-way catalysts under ideal automobile exhaust conditions: an <i>operando</i> study. Catalysis Science and Technology, 2021, 11, 6182-6190.	4.1	9
9	Dual Ag/Co cocatalyst synergism for the highly effective photocatalytic conversion of CO ₂ by H ₂ O over Al-SrTiO ₃ . Chemical Science, 2021, 12, 4940-4948.	7.4	34
10	Oxidation and Storage Mechanisms for Nitrogen Oxides on Variously Terminated (001) Surfaces of SrFeO _{3â°Î′} and Sr ₃ Fe ₂ O _{7â°Î′} Perovskites. ACS Applied Materials & Dr. Supplied Materials & Dr. Supplied & Dr	8.0	14
11	Preparation of Ag-Loaded Ga ₂ O ₃ Particles by the Ultrasonic Reduction Method and their Photocatalytic Activities for CO ₂ Reduction. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2021, 68, 93-98.	0.2	0
12	Observation of Adsorbed Hydrogen Species on Supported Metal Catalysts by Inelastic Neutron Scattering. Topics in Catalysis, 2021, 64, 660-671.	2.8	2
13	Oxygen Release and Storage Property of Fe–Al Spinel Compounds: A Three-Way Catalytic Reaction over a Supported Rh Catalyst. ACS Applied Materials & Supported Rh Catalyst.	8.0	4
14	Recent Applications of X-ray Absorption Spectroscopy in Combination with High Energy Resolution Fluorescence Detection. Chemistry Letters, 2021, 50, 1075-1085.	1.3	6
15	Local Structure and L ₁ - and L ₃ -Edge X-ray Absorption Near Edge Structures of Middle Lanthanoid Elements (Eu, Gd, Tb, and Dy) in Their Complex Oxides. Inorganic Chemistry, 2021, 60, 9359-9367.	4.0	8
16	lonic Liquid-Stabilized Single-Atom Rh Catalyst Against Leaching. CCS Chemistry, 2021, 3, 1814-1822.	7.8	30
17	Strong Metal–Support Interaction in Pd/Ca2AlMnO5+Î′: Catalytic NO Reduction over Mn-Doped CaO Shell. ACS Catalysis, 2021, 11, 7996-8003.	11.2	9
18	NO _{<i>x</i>} Storage Performance at Low Temperature over Platinum Group Metal-Free SrTiO ₃ -Based Material. ACS Applied Materials & Samp; Interfaces, 2021, 13, 29482-29490.	8.0	9

#	Article	IF	CITATIONS
19	Highly Selective Photocatalytic Conversion of Carbon Dioxide by Water over Al-SrTiO ₃ Photocatalyst Modified with Silver–Metal Dual Cocatalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 9327-9335.	6.7	26
20	Development of Zinc Hydroxide as an Abundant and Universal Cocatalyst for the Selective Photocatalytic Conversion of CO 2 by H 2 O. ChemCatChem, 2021, 13, 4313.	3.7	4
21	Low-Temperature NOx Storage Capability of YBaCo4O7+δOriginating from Large Oxygen Nonstoichiometry. Industrial & Engineering Chemistry Research, 2021, 60, 9817-9823.	3.7	0
22	Shift of active sites via in-situ photodeposition of chromate achieving highly selective photocatalytic conversion of CO2 by H2O over ZnTa2O6. Applied Catalysis B: Environmental, 2021, 298, 120508.	20.2	9
23	Effect of Zn in Ag-Loaded Zn-Modified ZnTa ₂ O ₆ for Photocatalytic Conversion of CO ₂ by H ₂ O. Journal of Physical Chemistry C, 2021, 125, 1304-1312.	3.1	10
24	xTunes: A new XAS processing tool for detailed and on-the-fly analysis. Radiation Physics and Chemistry, 2020, 175, 108270.	2.8	36
25	Enhanced CO evolution for photocatalytic conversion of CO2 by H2O over Ca modified Ga2O3. Communications Chemistry, 2020, 3, .	4.5	26
26	Zeoliteâ€Encaged Pd–Mn Nanocatalysts for CO ₂ Hydrogenation and Formic Acid Dehydrogenation. Angewandte Chemie, 2020, 132, 20358-20366.	2.0	22
27	Zeoliteâ€Encaged Pd–Mn Nanocatalysts for CO ₂ Hydrogenation and Formic Acid Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 20183-20191.	13.8	175
28	Optimized Synthesis of Agâ€Modified Alâ€Doped SrTiO ₃ Photocatalyst for the Conversion of CO ₂ Using H ₂ O as an Electron Donor. ChemistrySelect, 2020, 5, 8779-8786.	1.5	26
29	Fe-Modified CuNi Alloy Catalyst as a Nonprecious Metal Catalyst for Three-Way Catalysis. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 19907-19917.	3.7	15
30	Ni–Pt Alloy Nanoparticles with Isolated Pt Atoms and Their Cooperative Neighboring Ni Atoms for Selective Hydrogenation of CO ₂ Toward CH ₄ Evolution: ⟨i>In Situ and Transient Fourier Transform Infrared Studies. ACS Applied Nano Materials, 2020, 3, 9633-9644.	5.0	24
31	Low-temperature NO oxidation using lattice oxygen in Fe-site substituted SrFeO3â [^] δ. Physical Chemistry Chemical Physics, 2020, 22, 24181-24190.	2.8	10
32	Deactivation Mechanism and Enhanced Durability of V ₂ 6="MoO ₃ Catalysts for NH ₃ 6^"SiO ₂ 6-"MoO ₃ 7-"Sub>6-"SiO ₂ 8-"SiO ₂ 6-"MoO ₃ 6-"SiD>side MoO _{6-"SiD>side MoO_{6-"SiD>side MoO_{6-"SiD>side MoO_{6-"SiD>side MoO_{6-"SiD>side MoOO_{6-"SiD>side MoOOO_{6-"SiD>side MoOOO_{6-"SiD>side MoOOOO_{6-"SiD>side MoOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO}}}}}}}}}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	3.7	13
33	Self-Regeneration Process of Ni–Cu Alloy Catalysts during a Three-Way Catalytic Reaction—An <i>Operando</i> Study. ACS Applied Materials & Interfaces, 2020, 12, 55994-56003.	8.0	5
34	Excellent Catalytic Activity of a Pdâ€Promoted MnO x Catalyst for Purifying Automotive Exhaust Gases. ChemCatChem, 2020, 12, 4276-4280.	3.7	11
35	Effect of molybdenum on the structure and performance of V2O5/TiO2–SiO2–MoO3 catalysts for the oxidative degradation of o-chlorotoluene. Applied Catalysis A: General, 2020, 595, 117496.	4.3	11
36	Photocatalytic conversion of CO2 by H2O over heterogeneous photocatalysts. , 2020, , 179-190.		1

#	Article	IF	CITATIONS
37	Imparting CO ₂ reduction selectivity to ZnGa ₂ O ₄ photocatalysts by crystallization from hetero nano assembly of amorphous-like metal hydroxides. RSC Advances, 2020, 10, 8066-8073.	3.6	15
38	⟨i>In Situ XANES Characterization of V ₂ 6 V ₂ 6 MoO ₃ Catalyst for Selective Catalytic Reduction of NO by NH ₃ . Industrial & Selective Catalytic Reduction of NO by NH ₃ . Industrial & Selective Catalytic Reduction of NO by NH ₃ . Industrial & Selective Catalytic Research, 2020, 59, 13467-13476.	3.7	7
39	Effect of Surface Reforming via O ₃ Treatment on the Electrochemical CO ₂ Reduction Activity of a Ag Cathode. ACS Applied Energy Materials, 2020, 3, 6552-6560.	5.1	9
40	Photoelectrochemical investigation of the role of surface-modified Yb species in the photocatalytic conversion of CO2 by H2O over Ga2O3 photocatalysts. Catalysis Today, 2020, 352, 18-26.	4.4	5
41	Dynamics of the Lattice Oxygen in a Ruddlesden–Popper-type Sr3Fe2O7â~δCatalyst during NO Oxidation. ACS Catalysis, 2020, 10, 2528-2537.	11.2	12
42	Effective Driving of Ag-Loaded and Al-Doped SrTiO ₃ under Irradiation at λ > 300 nm for the Photocatalytic Conversion of CO ₂ by H ₂ O. ACS Applied Energy Materials, 2020, 3, 1468-1475.	5.1	56
43	CO and C3H6 oxidation over platinum-group metal (PGM) catalysts supported on Mn-modified hexagonal YbFeO3. Catalysis Today, 2019, 332, 183-188.	4.4	9
44	Isolated Platinum Atoms in Ni/ \hat{I}^3 -Al ₂ O ₃ for Selective Hydrogenation of CO ₂ toward CH ₄ . Journal of Physical Chemistry C, 2019, 123, 23446-23454.	3.1	29
45	Quantum Chemical Computation-Driven Development of Cu-Shell–Ru-Core Nanoparticle Catalyst for NO Reduction Reaction. Journal of Physical Chemistry C, 2019, 123, 20251-20256.	3.1	5
46	NOx Oxidation and Storage Properties of a Ruddlesden–Popper-Type Sr3Fe2O7â^Î-Layered Perovskite Catalyst. ACS Applied Materials & Interfaces, 2019, 11, 26985-26993.	8.0	23
47	Important Role of Strontium Atom on the Surface of Sr ₂ KTa ₅ O ₁₅ with a Tetragonal Tungsten Bronze Structure to Improve Adsorption of CO ₂ for Photocatalytic Conversion of CO ₂ by H ₂ O. ACS Applied Materials & Interfaces, 2019, 11, 37875-37884.	8.0	9
48	Efficient oxygen storage property of Sr–Fe mixed oxide as automotive catalyst support. Journal of Materials Chemistry A, 2019, 7, 1013-1021.	10.3	12
49	The importance of direct reduction in the synthesis of highly active Pt–Sn/SBA-15 for <i>n</i> butane dehydrogenation. Catalysis Science and Technology, 2019, 9, 947-956.	4.1	14
50	Effect of Cr Species on Photocatalytic Stability during the Conversion of CO ₂ by H ₂ O. Journal of Physical Chemistry C, 2019, 123, 2894-2899.	3.1	7
51	Role of Bicarbonate Ions in Aqueous Solution as a Carbon Source for Photocatalytic Conversion of CO ₂ into CO. ACS Applied Energy Materials, 2019, 2, 5397-5405.	5.1	16
52	Deactivation Mechanism of Pd/CeO ₂ –ZrO ₂ Three-Way Catalysts Analyzed by Chassis-Dynamometer Tests and <i>in Situ</i>) Diffuse Reflectance Spectroscopy. ACS Catalysis, 2019, 9, 6415-6424.	11.2	40
53	Self-regeneration of a Ni–Cu alloy catalyst during a three-way catalytic reaction. Physical Chemistry Chemical Physics, 2019, 21, 18816-18822.	2.8	16
54	In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nature Communications, 2019, 10, 1330.	12.8	177

#	Article	IF	CITATIONS
55	Model building of metal oxide surfaces and vibronic coupling density as a reactivity index: Regioselectivity of CO2 adsorption on Ag-loaded Ga2O3. Chemical Physics Letters, 2019, 715, 239-243.	2.6	2
56	Pt–Co Alloy Nanoparticles on a γâ€Al ₂ O ₃ Support: Synergistic Effect between Isolated Electronâ€Rich Pt and Co for Automotive Exhaust Purification. ChemPlusChem, 2019, 84, 447-456.	2.8	12
57	Effect of Thickness of Chromium Hydroxide Layer on Ag Cocatalyst Surface for Highly Selective Photocatalytic Conversion of CO ₂ by H ₂ O. ACS Sustainable Chemistry and Engineering, 2019, 7, 2083-2090.	6.7	32
58	Necessary and sufficient conditions for the successful three-phase photocatalytic reduction of CO ₂ by H ₂ O over heterogeneous photocatalysts. Physical Chemistry Chemical Physics, 2018, 20, 8423-8431.	2.8	38
59	A nanoLDH catalyst with high CO ₂ adsorption capability for photo-catalytic reduction. Journal of Materials Chemistry A, 2018, 6, 9684-9690.	10.3	43
60	Striking Oxygen-Release/Storage Properties of Fe-Site-Substituted Sr ₃ Fe ₂ O _{7â^î} . Journal of Physical Chemistry C, 2018, 122, 11186-11193.	3.1	21
61	Recent progress in photocatalytic conversion of carbon dioxide over gallium oxide and its nanocomposites. Current Opinion in Chemical Engineering, 2018, 20, 114-121.	7.8	15
62	Catalytic amino acid production from biomass-derived intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5093-5098.	7.1	168
63	Flux method fabrication of potassium rare-earth tantalates for CO2 photoreduction using H2O as an electron donor. Catalysis Today, 2018, 300, 173-182.	4.4	24
64	Role of lattice oxygen and oxygen vacancy sites in platinum group metal catalysts supported on $Sr(sub) Fe(sub) C(sub) 7a^2(sub)$ for NO-selective reduction. Catalysis Science and Technology, 2018, 8, 147-153.	4.1	29
65	Dynamic Behavior of Rh Species in Rh/Al ₂ O ₃ Model Catalyst during Three-Way Catalytic Reaction: An <i>Operando</i> X-ray Absorption Spectroscopy Study. Journal of the American Chemical Society, 2018, 140, 176-184.	13.7	55
66	Modification of Ga ₂ O ₃ by an Ag–Cr core–shell cocatalyst enhances photocatalytic CO evolution for the conversion of CO ₂ by H ₂ O. Chemical Communications, 2018, 54, 1053-1056.	4.1	53
67	A feasibility study of "range-extended―EXAFS measurement at the Pt L ₃ -edge of Pt/Al ₂ O ₃ . Journal of Analytical Atomic Spectrometry, 2018, 33, 84-89.	3.0	10
68	Metalâ€Dependent Support Effects of Oxyhydrideâ€Supported Ru, Fe, Co Catalysts for Ammonia Synthesis. Advanced Energy Materials, 2018, 8, 1801772.	19.5	111
69	Regioselectivity of H ₂ Adsorption on Ga ₂ O ₃ Surface Based on Vibronic Coupling Density Analysis. Journal of Computer Chemistry Japan, 2018, 17, 138-141.	0.1	1
70	A detailed insight into the catalytic reduction of NO operated by Cr–Cu nanostructures embedded in a CeO ₂ surface. Physical Chemistry Chemical Physics, 2018, 20, 25592-25601.	2.8	14
71	Development of Rh-Doped Ga ₂ O ₃ Photocatalysts for Reduction of CO ₂ by H ₂ O as an Electron Donor at a More than 300 nm Wavelength. Journal of Physical Chemistry C, 2018, 122, 21132-21139.	3.1	22
72	Photocatalytic Conversion of Carbon Dioxide over A ₂ BTa ₅ O ₁₅ (A) Tj ETQc Engineering, 2018, 6, 8247-8255.	ηΟ Ο Ο rgB ⁻ 6.7	T /Overlock 1 8

Engineering, 2018, 6, 8247-8255.

#	Article	IF	CITATIONS
73	Mechanism of NO–CO reaction over highly dispersed cuprous oxide on γ-alumina catalyst using a metal–support interfacial site in the presence of oxygen: similarities to and differences from biological systems. Catalysis Science and Technology, 2018, 8, 3833-3845.	4.1	16
74	Probing the Entropic Effect in Molecular Noncovalent Interactions between Resinâ€Bound Polybrominated Arenes and Small Substrates. ChemPlusChem, 2018, 83, 820-824.	2.8	1
75	Elucidating strong metal-support interactions in Pt–Sn/SiO2 catalyst and its consequences for dehydrogenation of lower alkanes. Journal of Catalysis, 2018, 365, 277-291.	6.2	84
76	Pd/SrFe _{1–<i>x</i>} Ti _{<i>x</i>} O _{3â^Î} as Environmental Catalyst: Purification of Automotive Exhaust Gases. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22182-22189.	8.0	13
77	A Theoretical Investigation on CO Oxidation by Singleâ€Atom Catalysts M ₁ ∫γâ€Al ₂ O ₃ (M=Pd, Fe, Co, and Ni). ChemCatChem, 2017, 9, 1222-1229	9 ^{3.7}	76
78	Which is an Intermediate Species for Photocatalytic Conversion of CO ₂ by H ₂ O as the Electron Donor: CO ₂ Molecule, Carbonic Acid, Bicarbonate, or Carbonate lons?. Journal of Physical Chemistry C, 2017, 121, 8711-8721.	3.1	54
79	Efficient photocatalytic carbon monoxide production from ammonia and carbon dioxide by the aid of artificial photosynthesis. Chemical Science, 2017, 8, 5797-5801.	7.4	9
80	Highly Active and Stable Pt–Sn/SBA-15 Catalyst Prepared by Direct Reduction for Ethylbenzene Dehydrogenation: Effects of Sn Addition. Industrial & Engineering Chemistry Research, 2017, 56, 7160-7172.	3.7	28
81	Strong metal-support interaction between Pt and SiO ₂ following high-temperature reduction: a catalytic interface for propane dehydrogenation. Chemical Communications, 2017, 53, 6937-6940.	4.1	61
82	Selective reduction of NO over Cu/Al2O3: Enhanced catalytic activity by infinitesimal loading of Rh on Cu/Al2O3. Molecular Catalysis, 2017, 442, 74-82.	2.0	23
83	Visible-Light Selective Photooxidation of Aromatic Hydrocarbons via Ligand-to-Metal Charge Transfer Transition on Nb ₂ 0 ₅ . Journal of Physical Chemistry C, 2017, 121, 22854-22861.	3.1	36
84	Drastic improvement in the photocatalytic activity of Ga ₂ O ₃ modified with Mgâ€"Al layered double hydroxide for the conversion of CO ₂ in water. Sustainable Energy and Fuels, 2017, 1, 1740-1747.	4.9	35
85	Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nature Communications, 2017, 8, 16100.	12.8	545
86	Oxygen Storage Property and Chemical Stability of SrFe _{1â\in"<i>x</i>xxxxxx36$^{\circ}$Î Yournal of Physical Chemistry C, 2017, 121, 19358-19364.}	3.1	26
87	CO ₂ capture, storage, and conversion using a praseodymium-modified Ga ₂ O ₃ photocatalyst. Journal of Materials Chemistry A, 2017, 5, 19351-19357.	10.3	38
88	Enhanced oxygen-release/storage properties of Pd-loaded Sr ₃ Fe ₂ O _{7â^Î} . Physical Chemistry Chemical Physics, 2017, 19, 14107-14113.	2.8	27
89	Enhancement of CO Evolution by Modification of Ga ₂ O ₃ with Rare-Earth Elements for the Photocatalytic Conversion of CO ₂ by H ₂ O. Langmuir, 2017, 33, 13929-13935.	3.5	43
90	Sodium Cation Substitution in Sr ₂ KTa ₅ O ₁₅ toward Enhancement of Photocatalytic Conversion of CO ₂ Using H ₂ O as an Electron Donor. ACS Omega, 2017, 2, 8187-8197.	3.5	11

#	Article	IF	CITATIONS
91	Highly selective photocatalytic conversion of CO2 by water over Ag-loaded SrNb2O6 nanorods. Applied Catalysis B: Environmental, 2017, 218, 770-778.	20.2	86
92	Fabrication of well-shaped Sr2KTa5O15 nanorods with a tetragonal tungsten bronze structure by a flux method for artificial photosynthesis. Applied Catalysis B: Environmental, 2016, 199, 272-281.	20.2	34
93	Selective Catalytic Reduction of NO by NH ₃ over Photocatalysts (Photo CR): Mechanistic Investigations and Developments. Chemical Record, 2016, 16, 2268-2277.	5.8	18
94	A ZnTa ₂ O ₆ photocatalyst synthesized via solid state reaction for conversion of CO ₂ into CO in water. Catalysis Science and Technology, 2016, 6, 4978-4985.	4.1	46
95	Rutile titanium dioxide prepared by hydrogen reduction of Degussa P25 for highly efficient photocatalytic hydrogen evolution. Catalysis Science and Technology, 2016, 6, 5693-5699.	4.1	58
96	Investigation of the electrochemical and photoelectrochemical properties of Ni–Al LDH photocatalysts. Physical Chemistry Chemical Physics, 2016, 18, 13811-13819.	2.8	36
97	Monolayer Tantalum Oxide on Mesoporous Silica Substrate. ChemistrySelect, 2016, 1, 3124-3131.	1.5	5
98	Promoter effect of Pd species on Mn oxide catalysts supported on rare-earth-iron mixed oxide. Catalysis Science and Technology, 2016, 6, 7868-7874.	4.1	13
99	Effect of Ti ³⁺ Ions and Conduction Band Electrons on Photocatalytic and Photoelectrochemical Activity of Rutile Titania for Water Oxidation. Journal of Physical Chemistry C, 2016, 120, 6467-6474.	3.1	147
100	Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO ₂ with H ₂ O through the modification of Ag-loaded Ga ₂ O ₃ with a ZnGa ₂ O ₄ layer. Catalysis Science and Technology, 2016, 6, 1025-1032.	4.1	94
101	Photocatalytic Conversion of CO2 by H2O over Ag-Loaded SrO-Modified Ta2O5. Bulletin of the Chemical Society of Japan, 2015, 88, 431-437.	3.2	56
102	Solvothermal Synthesis of Ca2Nb2O7 Fine Particles and Their High Activity for Photocatalytic Water Splitting into H2 and O2 under UV Light Irradiation. Chemistry Letters, 2015, 44, 1001-1003.	1.3	14
103	Popping of Graphite Oxide: Application in Preparing Metal Nanoparticle Catalysts. Advanced Materials, 2015, 27, 4688-4694.	21.0	48
104	Highly efficient photocatalytic conversion of CO ₂ into solid CO using H ₂ O as a reductant over Ag-modified ZnGa ₂ O ₄ . Journal of Materials Chemistry A, 2015, 3, 11313-11319.	10.3	103
105	Photocatalytic conversion of CO2 in an aqueous solution using various kinds of layered double hydroxides. Catalysis Today, 2015, 251, 140-144.	4.4	43
106	Effect of the chloride ion as a hole scavenger on the photocatalytic conversion of CO ₂ in an aqueous solution over Ni–Al layered double hydroxides. Physical Chemistry Chemical Physics, 2015, 17, 17995-18003.	2.8	76
107	Oxygen storage capacity of Sr ₃ Fe ₂ O _{7â^î^} having high structural stability. Journal of Materials Chemistry A, 2015, 3, 13540-13545.	10.3	43
108	Local Structure and L1- and L3-Edge X-ray Absorption Near Edge Structure of Late Lanthanide Elements (Ho, Er, Yb) in Their Complex Oxides. Journal of Physical Chemistry C, 2015, 119, 8070-8077.	3.1	14

#	Article	IF	CITATIONS
109	Visible-light-assisted selective catalytic reduction of NO with NH ₃ on porphyrin derivative-modified TiO ₂ photocatalysts. Catalysis Science and Technology, 2015, 5, 556-561.	4.1	33
110	Photocatalytic conversion of CO2 in water over Ag-modified La2Ti2O7. Applied Catalysis B: Environmental, 2015, 163, 241-247.	20.2	133
111	(Invited) Photocatalytic Conversion of CO2 By H2o As an Electron Donor over Ag/ZnGa2O4/Ga2O3. ECS Meeting Abstracts, 2015, , .	0.0	0
112	A Series of NiM (M = Ru, Rh, and Pd) Bimetallic Catalysts for Effective Lignin Hydrogenolysis in Water. ACS Catalysis, 2014, 4, 1574-1583.	11.2	421
113	A Doping Technique that Suppresses Undesirable H ₂ Evolution Derived from Overall Water Splitting in the Highly Selective Photocatalytic Conversion of CO ₂ in and by Water. Chemistry - A European Journal, 2014, 20, 9906-9909.	3.3	119
114	Dehydrogenation of Propane over Silicaâ€Supported Platinumâ€"Tin Catalysts Prepared by Direct Reduction: Effects of Tin/Platinum Ratio and Reduction Temperature. ChemCatChem, 2014, 6, 2680-2691.	3.7	49
115	Local Structure and La L ₁ and L ₃ -Edge XANES Spectra of Lanthanum Complex Oxides. Inorganic Chemistry, 2014, 53, 6048-6053.	4.0	44
116	Local Structure of Pr, Nd, and Sm Complex Oxides and Their X-ray Absorption Near Edge Structure Spectra. Journal of Physical Chemistry C, 2014, 118, 20881-20888.	3.1	15
117	Characterization of Cu Nanoparticles on TiO2 Photocatalysts Fabricated by Electroless Plating Method. Topics in Catalysis, 2014, 57, 975-983.	2.8	15
118	Ultrathin rhodium nanosheets. Nature Communications, 2014, 5, 3093.	12.8	428
119	Effect of reduction method on the activity of Pt–Sn/SiO2 for dehydrogenation of propane. Catalysis Today, 2014, 232, 33-39.	4.4	52
119 120		4.4 1.3	52
	Today, 2014, 232, 33-39. Gold Nanoparticles Coated with Manganese–Porphyrin That Effectively Shorten the Longitudinal Relaxation Time of Water Molecules Depending on the Particle Size. Chemistry Letters, 2014, 43,		
120	Today, 2014, 232, 33-39. Gold Nanoparticles Coated with Manganese–Porphyrin That Effectively Shorten the Longitudinal Relaxation Time of Water Molecules Depending on the Particle Size. Chemistry Letters, 2014, 43, 1901-1903. Reaction Mechanism of Selective Photooxidation of Amines over Niobium Oxide: Visible-Light-Induced Electron Transfer between Adsorbed Amine and Nb2O5. Journal of Physical Chemistry C, 2013, 117,	1.3	4
120 121	Today, 2014, 232, 33-39. Gold Nanoparticles Coated with Manganese–Porphyrin That Effectively Shorten the Longitudinal Relaxation Time of Water Molecules Depending on the Particle Size. Chemistry Letters, 2014, 43, 1901-1903. Reaction Mechanism of Selective Photooxidation of Amines over Niobium Oxide: Visible-Light-Induced Electron Transfer between Adsorbed Amine and Nb2O5. Journal of Physical Chemistry C, 2013, 117, 442-450. Effects of reaction temperature on the photocatalytic activity of photo-SCR of NO with NH3 over a	1.3	4 59
120 121 122	Today, 2014, 232, 33-39. Gold Nanoparticles Coated with Manganese–Porphyrin That Effectively Shorten the Longitudinal Relaxation Time of Water Molecules Depending on the Particle Size. Chemistry Letters, 2014, 43, 1901-1903. Reaction Mechanism of Selective Photooxidation of Amines over Niobium Oxide: Visible-Light-Induced Electron Transfer between Adsorbed Amine and Nb2O5. Journal of Physical Chemistry C, 2013, 117, 442-450. Effects of reaction temperature on the photocatalytic activity of photo-SCR of NO with NH3 over a TiO2 photocatalyst. Catalysis Science and Technology, 2013, 3, 1771. Propane Metathesis by a Tandem Catalytic System: Dehydrogenation and Hydrogenation over	1.3 3.1 4.1	4 59 45
120 121 122 123	Today, 2014, 232, 33-39. Gold Nanoparticles Coated with Manganese–Porphyrin That Effectively Shorten the Longitudinal Relaxation Time of Water Molecules Depending on the Particle Size. Chemistry Letters, 2014, 43, 1901-1903. Reaction Mechanism of Selective Photooxidation of Amines over Niobium Oxide: Visible-Light-Induced Electron Transfer between Adsorbed Amine and Nb2O5. Journal of Physical Chemistry C, 2013, 117, 442-450. Effects of reaction temperature on the photocatalytic activity of photo-SCR of NO with NH3 over a TiO2 photocatalyst. Catalysis Science and Technology, 2013, 3, 1771. Propane Metathesis by a Tandem Catalytic System: Dehydrogenation and Hydrogenation over PtSn/Al2O3, and Metathesis over Re2O7/Al2O3. Chemistry Letters, 2012, 41, 254-256. In situ observation of the dynamic behavior of Cu–Al–Ox catalysts for water gas shift reaction during daily start-up and shut-down (DSS)-like operation. Catalysis Science and Technology, 2012, 2,	1.3 3.1 4.1	4 59 45

#	Article	IF	Citations
127	Reaction Mechanism of Selective Photooxidation of Hydrocarbons over Nb ₂ O ₅ . Journal of Physical Chemistry C, 2011, 115, 19320-19327.	3.1	46
128	Structural Analysis of Group V, VI, and VII Metal Compounds by XAFS. Journal of Physical Chemistry C, 2011, 115, 23653-23663.	3.1	36
129	Selective Amine Oxidation Using Nb $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 5 $<$ /sub $>$ Photocatalyst and O $<$ sub $>$ 2 $<$ /sub $>$ ACS Catalysis, 2011, 1, 1150-1153.	11.2	258
130	Modification of Metal Nanoparticles with TiO ₂ and Metalâ^'Support Interaction in Photodeposition. ACS Catalysis, 2011, 1, 187-192.	11.2	88
131	A unique photo-activation mechanism by "in situ doping―for photo-assisted selective NO reduction with ammonia over TiO2 and photooxidation of alcohols over Nb2O5. Catalysis Science and Technology, 2011, 1, 541.	4.1	35
132	Photo-Induced Electron Transfer Between a Reactant Molecule and Semiconductor Photocatalyst: In Situ Doping. Catalysis Surveys From Asia, 2011, 15, 240-258.	2.6	12
133	Reaction Mechanism and the Role of Copper in the Photooxidation of Alcohol over Cu/Nb ₂ O ₅ . ChemPhysChem, 2011, 12, 2823-2830.	2.1	24
134	Synthesis and Catalytic Performance of Organic–Inorganic Hybrid Mesoporous Material Having Basic Nanospace. Catalysis Letters, 2010, 140, 121-126.	2.6	6
135	Generation of BrÃ,nsted Acid Over Alumina-Supported Niobia Calcined at High Temperatures. Topics in Catalysis, 2010, 53, 672-677.	2.8	14
136	Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A = Li, Na, K). Applied Catalysis B: Environmental, 2010, 96, 565-568.	20.2	135
137	Adsorbed Species of CO ₂ and H ₂ on Ga ₂ O ₃ for the Photocatalytic Reduction of CO ₂ . Journal of Physical Chemistry C, 2010, 114, 8892-8898.	3.1	181
138	Structural analysis of group V, VI, VII metal compounds by XAFS and DFT calculation. Journal of Physics: Conference Series, 2009, 190, 012073.	0.4	12
139	Brønsted Acid Generation over Alumina-Supported Niobia by Calcination at 1173ÂK. Catalysis Letters, 2009, 129, 383-386.	2.6	35
140	In Situ Time-Resolved Energy-Dispersive XAFS Study on Reduction Behavior of Pt Supported on TiO2 and Al2O3. Catalysis Letters, 2009, 131, 413-418.	2.6	22
141	Pore-Size Dependence of the Acidic Property of Mesoporous Silica FSM-16. Topics in Catalysis, 2009, 52, 657-663.	2.8	8
142	Size Controlled Synthesis of Gold Nanoparticles by Porphyrin with Four Sulfur Atoms. Topics in Catalysis, 2009, 52, 852-859.	2.8	27
143	Active Center Induced by Vibronic Interactions in V2O5/SiO2. Topics in Catalysis, 2009, 52, 808-812.	2.8	4
144	Mechanism of Photooxidation of Alcohol over Nb ₂ O ₅ . Journal of Physical Chemistry C, 2009, 113, 18713-18718.	3.1	102

#	Article	IF	Citations
145	Control of Acid-Site Location of MFI Zeolite by Catalytic Cracking of Silane and Its Application to Olefin Synthesis from Acetone. Journal of Chemical Engineering of Japan, 2009, 42, S162-S167.	0.6	16
146	XAFS and XRD Analysis of Ceria–Zirconia Oxygen Storage Promoters for Automotive Catalysts. Topics in Catalysis, 2008, 47, 137-147.	2.8	33
147	Photo-induced Surface Property on Transparent Mesoporous Silica Thin Films Containing Single-site Photocatalyst. Topics in Catalysis, 2008, 47, 116-121.	2.8	11
148	Structural analysis of tungsten–zirconium oxide catalyst by W Kâ€edge and L ₁ â€edge XAFS. X-Ray Spectrometry, 2008, 37, 226-231.	1.4	19
149	Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chemical Physics Letters, 2008, 467, 191-194.	2.6	109
150	Metal oxide promoted TiO2 catalysts for photo-assisted selective catalytic reduction of NO with NH3. Research on Chemical Intermediates, 2008, 34, 487-494.	2.7	17
151	XAFS Study of Tungsten L ₁ - and L ₃ -Edges:  Structural Analysis of WO ₃ Species Loaded on TiO ₂ as a Catalyst for Photo-oxidation of NH ₃ . Journal of Physical Chemistry C, 2008, 112, 6869-6879.	3.1	161
152	XAFS Study of Active Tungsten Species on WO3/TiO2 as a Catalyst for Photo-SCR. AIP Conference Proceedings, 2007, , .	0.4	3
153	Determination of Chemical States of Mercury on Activated Carbon Using XANES. AIP Conference Proceedings, 2007, , .	0.4	4
154	Energy-Dispersive XAFS Study on Reduction Behavior of Pt Supported on TiO2 and Al2O3. AIP Conference Proceedings, 2007, , .	0.4	1
155	Visible Light Absorbed NH ₂ Species Derived from NH ₃ Adsorbed on TiO ₂ for Photoassisted Selective Catalytic Reduction. Journal of Physical Chemistry C, 2007, 111, 14189-14197.	3.1	48
156	Liquid phase photooxidation of alcohol over niobium oxide without solvents. Catalysis Today, 2007, 120, 233-239.	4.4	65
157	One-electron reducibility of isolated copper oxide on alumina for selective NO–CO reaction. Applied Catalysis B: Environmental, 2006, 64, 282-289.	20.2	77
158	Modification of photocatalytic center for photo-epoxidation of propylene by rubidium ion addition to V2O5/SiO2. Catalysis Communications, 2005, 6, 269-273.	3.3	30
159	Photocatalytic Reduction of CO2to CO in the Presence of H2or CH4as a Reductant over MgO. Journal of Physical Chemistry B, 2004, 108, 346-354.	2.6	237
160	Structures and Acidâ´'Base Properties of La/Al2O3 Role of La Addition to Enhance Thermal Stability of \hat{l}^3 -Al2O3. Chemistry of Materials, 2003, 15, 4830-4840.	6.7	74
161	Supported Tantalum Oxide Catalysts:Â Synthesis, Physical Characterization, and Methanol Oxidation Chemical Probe Reaction. Journal of Physical Chemistry B, 2003, 107, 5243-5250.	2.6	93
162	Intermediate Valence State of La0.9Eu0.1Ni2(Si1-xGex)2Compounds. Journal of the Physical Society of Japan, 2003, 72, 2604-2607.	1.6	1

#	Article	IF	CITATIONS
163	Photoassisted NO reduction with NH3 over TiO2 photocatalyst. Chemical Communications, 2002, , 2742-2743.	4.1	33
164	NO reduction with CO in the presence of O2 over Al2O3-supported and Cu-based catalysts. Physical Chemistry Chemical Physics, 2002, 4, 2449-2458.	2.8	72
165	Title is missing!. Topics in Catalysis, 2002, 18, 113-118.	2.8	34
166	Alumina-Supported Rare-Earth Oxides Characterized by Acid-Catalyzed Reactions and Spectroscopic Methods. Journal of Physical Chemistry B, 2001, 105, 1908-1916.	2.6	45
167	Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Physical Chemistry Chemical Physics, 2001, 3, 1108-1113.	2.8	101
168	Effect of Calcium Sulfate Addition on the Activity of the Absorbent for Dry Flue Gas Desulfurization. Energy & Desulfurization Energy & Desulfuriz	5.1	29
169	Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Physical Chemistry Chemical Physics, 2000, 2, 5302-5307.	2.8	97
170	Preparation of Active Absorbent for Dry-Type Flue Gas Desulfurization from Calcium Oxide, Coal Fly Ash, and Gypsum. Industrial & Engineering Chemistry Research, 2000, 39, 1390-1396.	3.7	62
171	Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2. Physical Chemistry Chemical Physics, 2000, 2, 2635-2639.	2.8	117
172	Frontiers of Photo-catalysis and Photo-reaction at Solid Surfaces. Photocatalysis by Silica Hyomen Kagaku, 1999, 20, 73-78.	0.0	1
173	XAFS study of zirconia-supported copper catalysts for the NO–CO reaction: Deactivation, rejuvenation and stabilization of Cu species. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3743-3752.	1.7	57
174	Structures of Molybdenum Species in Silica-Supported Molybdenum Oxide and Alkali-Ion-Modified Silica-Supported Molybdenum Oxide. Journal of Physical Chemistry B, 1998, 102, 2960-2969.	2.6	65
175	Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1875-1880.	1.7	81
176	Deconvolution Analysis of Ga K-Edge XANES for Quantification of Gallium Coordinations in Oxide Environments. Journal of Physical Chemistry B, 1998, 102, 10190-10195.	2.6	128
177	Characterization of High Performance Materials by L-edge XANES in Soft X-ray Region Hyomen Kagaku, 1998, 19, 314-320.	0.0	0
178	Structure of Active Species in Alkali-Ion-Modified Silica-Supported Vanadium Oxide. Journal of Physical Chemistry B, 1997, 101, 9035-9040.	2.6	50
179	Study on the Dispersion of Nickel Ions in the NiOâ^'MgO System by X-ray Absorption Fine Structure. The Journal of Physical Chemistry, 1996, 100, 2302-2309.	2.9	85
180	Structure of Moâ^'Mg Binary Oxides in Oxidized/Reduced States Studied by X-ray Absorption Spectroscopy at the Mo K Edge and Mg K Edge. The Journal of Physical Chemistry, 1996, 100, 5440-5446.	2.9	43

#	Article	IF	CITATIONS
181	Metal Oxide Catalysts. Series on Synchrotron Radiation Techniques and Applications, 1996, , 304-325.	0.2	11
182	Effect of Composition and Structure of Coating Polymers on Moisture Transporting Properties in Waterproof/Moisture-permeable Fabrics Prepared by Wet-Coagulation Process Seni Kikai Gakkai Shi/Journal of the Textile Machinery Society of Japan, 1996, 49, T49-T55.	0.0	4
183	Physico-chemical and catalytic properties of ytterbium introduced into Y-zeolite. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3177.	1.7	41
184	Valence Variation of Yb Encapsulated in the Supercage of Y-Type Zeolite. Japanese Journal of Applied Physics, 1993, 32, 481.	1.5	26
185	Analysis of XANES for identification of highly dispersed transition metal oxides on supports. Catalysis Letters, 1992, 12, 277-285.	2.6	102
186	X-ray absorption (EXAFS/XANES) study of supported vanadium oxide catalysts. Structure of surface vanadium oxide species on silica and $\hat{1}^3$ -alumina at a low level of vanadium loading. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 2987.	1.0	238
187	X-Ray absorption spectroscopy (EXAFS/XANES) evidence for the preferential formation of isolated VO4 species on highly photoactive V2O5/SiO2 catalysts. Journal of the Chemical Society Chemical Communications, 1987, , 506.	2.0	18