
## Weikang Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/305207/publications.pdf Version: 2024-02-01



WEIKANG CAL

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Insulin action in the brain: cell types, circuits, and diseases. Trends in Neurosciences, 2022, 45, 384-400.                                                                                              | 8.6  | 29        |
| 2  | Insulin Signaling Suppresses Autophagy in Astrocytes. FASEB Journal, 2022, 36, .                                                                                                                          | 0.5  | 0         |
| 3  | Distinct signaling by insulin and IGF-1 receptors and their extra- and intracellular domains.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .            | 7.1  | 41        |
| 4  | Peripheral Insulin Regulates a Broad Network of Gene Expression in Hypothalamus, Hippocampus, and<br>Nucleus Accumbens. Diabetes, 2021, 70, 1857-1873.                                                    | 0.6  | 21        |
| 5  | Deconstructing the origins of sexual dimorphism in sensory modulation of pancreatic Î <sup>2</sup> cells.<br>Molecular Metabolism, 2021, 53, 101260.                                                      | 6.5  | 10        |
| 6  | Muscle-Specific Insulin Receptor Overexpression Protects Mice From Diet-Induced Glucose<br>Intolerance but Leads to Postreceptor Insulin Resistance. Diabetes, 2020, 69, 2294-2309.                       | 0.6  | 11        |
| 7  | Arrestin domain-containing 3 (Arrdc3) modulates insulin action and glucose metabolism in liver.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6733-6740. | 7.1  | 35        |
| 8  | Single-cell transcriptional networks in differentiating preadipocytes suggest drivers associated with tissue heterogeneity. Nature Communications, 2020, 11, 2117.                                        | 12.8 | 37        |
| 9  | Role of p110a subunit of PI3-kinase in skeletal muscle mitochondrial homeostasis and metabolism.<br>Nature Communications, 2019, 10, 3412.                                                                | 12.8 | 19        |
| 10 | Insulin action in the brain regulates mitochondrial stress responses and reduces diet-induced weight<br>gain. Molecular Metabolism, 2019, 21, 68-81.                                                      | 6.5  | 41        |
| 11 | Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible<br>Succinylation. Molecular Cell, 2019, 74, 844-857.e7.                                                             | 9.7  | 123       |
| 12 | Multi-dimensional Transcriptional Remodeling by Physiological Insulin InÂVivo. Cell Reports, 2019, 26,<br>3429-3443.e3.                                                                                   | 6.4  | 62        |
| 13 | Membrane metallo-endopeptidase (Neprilysin) regulates inflammatory response and insulin signaling<br>in white preadipocytes. Molecular Metabolism, 2019, 22, 21-36.                                       | 6.5  | 15        |
| 14 | Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6379-6384.       | 7.1  | 138       |
| 15 | TRPV1 neurons regulate β-cell function in a sex-dependent manner. Molecular Metabolism, 2018, 18,<br>60-67.                                                                                               | 6.5  | 24        |
| 16 | Insulin regulates astrocyte gliotransmission and modulates behavior. Journal of Clinical<br>Investigation, 2018, 128, 2914-2926.                                                                          | 8.2  | 138       |
| 17 | Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression. Nature<br>Communications, 2017, 8, 14892.                                                                      | 12.8 | 111       |
| 18 | Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proceedings of the United States of America, 2015, 112, 3463-3468.                                                  | 7.1  | 314       |