List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3051292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of Chemically Structure-Controlled BN-Doped Carbons for the Molecular Understanding of Their Surface Active Sites for Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 1288-1297.	11.2	21
2	In-Depth Analysis of Key Factors Affecting the Catalysis of Oxidized Carbon Blacks for Cellulose Hydrolysis. ACS Catalysis, 2022, 12, 892-905.	11.2	19
3	Modulation of the electronic state of carbon thin films by inorganic substrates. Carbon, 2022, 196, 313-319.	10.3	1
4	Estimation of the spatial distribution of carbon edge sites in a carbon structure using H2 desorption kinetics in temperature programmed desorption. Carbon, 2022, 196, 1054-1062.	10.3	7
5	Direct conversion of lignin to high-quality graphene-based materials <i>via</i> catalytic carbonization. RSC Advances, 2021, 11, 18702-18707.	3.6	6
6	Benzene hydrogenation activities of Ni catalyst supported on N- and B-doped carbons. Diamond and Related Materials, 2021, 119, 108550.	3.9	7
7	Can electrical conductivity be a characterization tool for low-temperature carbon?. Tanso, 2021, 2021, 136-144.	0.1	0
8	Understanding the chemical structure of carbon edge sites by using deuterium-labeled temperature-programmed desorption technique. Carbon, 2020, 161, 343-349.	10.3	29
9	Electrochemistry and Carbon Materials Chemistry: Preparation of Carbon-based Materials Using Controlled Carbonization for Advanced Electrochemical Applications. Electrochemistry, 2020, 88, 343-343.	1.4	0
10	Synthesis of P- and N-doped carbon catalysts for the oxygen reduction reaction via controlled phosphoric acid treatment of folic acid. Beilstein Journal of Nanotechnology, 2019, 10, 1497-1510.	2.8	11
11	An Ion-Sensitive Field Effect Transistor Using Metal-Coordinated Zeolite-Templated Carbons as a Three-Dimensional Graphene Nanoribbon Network. Frontiers in Materials, 2019, 6, .	2.4	9
12	Warped graphitic layers generated by oxidation of fullerene extraction residue and its oxygen reduction catalytic activity. Beilstein Journal of Nanotechnology, 2019, 10, 1391-1400.	2.8	8
13	Influence of Low-temperature Oxidation on Structure of Coke Making Coal. ISIJ International, 2019, 59, 1465-1472.	1.4	1
14	Chemical composition and structure of carbon surfaces and their influence on the activities of carbon catalysts for the oxygen reduction reaction. Tanso, 2019, 2019, 195-203.	0.1	0
15	Critical advancements in achieving high power and stable nonprecious metal catalyst–based MEAs for real-world proton exchange membrane fuel cell applications. Science Advances, 2018, 4, eaar7180.	10.3	189
16	Influence of Low-temperature Oxidation on Structure of Coke Making Coal. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2018, 104, 401-408.	0.4	2
17	An analysis of the molecular structure of graphite by estimating the small number of edge sites. Tanso, 2018, 2018, 222-226.	0.1	0
18	New insights into non-precious metal catalyst layer designs for proton exchange membrane fuel cells: Improving performance and stability. Journal of Power Sources, 2017, 344, 39-45.	7.8	43

#	Article	IF	CITATIONS
19	Synergistically enhanced oxygen reduction activity of iron-based nanoshell carbons by copper incorporation. Carbon, 2017, 116, 591-598.	10.3	14
20	Enhanced catalytic activity of nanoshell carbon co-doped with boron and nitrogen in the oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 15489-15496.	7.1	32
21	Analyses of trace amounts of edge sites in natural graphite, synthetic graphite and high-temperature treated coke for the understanding of their carbon molecular structures. Carbon, 2017, 125, 146-155.	10.3	47
22	Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes. Journal of Power Sources, 2016, 318, 41-48.	7.8	67
23	Electrochemical Properties of an Atomically Dispersed Platinum Catalyst Formed on a Heat-treated Carbon Support. ChemistrySelect, 2016, 1, 3189-3196.	1.5	4
24	Single-Step Synthesis of W ₂ C Nanoparticle-Dispersed Carbon Electrocatalysts for Hydrogen Evolution Reactions Utilizing Phosphate Groups on Carbon Edge Sites. ACS Omega, 2016, 1, 689-695.	3.5	29
25	Mechanochemical Treatment of Precursors of Carbon-Nanoshell-Containing Catalysts for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2016, 163, H223-H227.	2.9	2
26	Carbon Alloy Catalysts for Polymer Electrolyte Fuel Cells: Exploration of Materials and Understanding of Mechanisms. Electrochemistry, 2015, 83, 319-325.	1.4	7
27	The contribution of surface metal complexes to the catalytic activity of carbon nanoshell particles in an amorphous carbon matrix for the oxygen reduction reaction. Tanso, 2015, 2015, 195-200.	0.1	0
28	Preparation of carbon alloy catalysts from humic acid and their activities for the oxygen reduction reaction. Tanso, 2015, 2015, 94-100.	0.1	1
29	Hard Carbon Anodes for Naâ€lon Batteries: Toward a Practical Use. ChemElectroChem, 2015, 2, 1917-1920.	3.4	112
30	Electrochemical oxygen reduction activity of intermediate onion-like carbon produced by the thermal transformation of nanodiamond. Carbon, 2015, 87, 415-417.	10.3	26
31	A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Power Sources, 2015, 285, 334-348.	7.8	457
32	A quantitative analysis of carbon edge sites and an estimation of graphene sheet size in high-temperature treated, non-porous carbons. Carbon, 2014, 80, 135-145.	10.3	85
33	Effects of graphite oxide additions on the oxygen reduction reaction activity of a carbon alloy catalyst for a polymer electrolyte fuel cell cathode. Tanso, 2014, 2014, 159-164.	0.1	1
34	Development of carbon alloy catalysts for a polymer electrolyte fuel cell. Tanso, 2014, 2014, 204-212.	0.1	1
35	5.ã,«ãf¼ãƒœãƒ³ã,¢ãƒã,ã,«ã,½ãƒ¼ãƒ‰è§¦åª³ã®ã"ã,Œã¾ã§ãïã"ã,Œã•ã,‰. Electrochemistry, 2014, 82, 191 	-195.	0
36	Probing carbon edge exposure of iron phthalocyanine-based oxygen reduction catalysts by soft X-ray absorption spectroscopy. Journal of Power Sources, 2013, 223, 30-35.	7.8	18

#	Article	IF	CITATIONS
37	Sculpture preparation of crystalline mesoporous carbons from nanoshell-containing carbon. Carbon, 2013, 61, 537-542.	10.3	5
38	Catalytic Carbons – Cathode Catalytic Carbons. , 2013, , 103-111.		1
39	Nanoshell-Containing Carbon Cathode Catalyst for Proton Exchange Membrane Fuel Cell from Herbaceous Plants Lignin. Smart Grid and Renewable Energy, 2013, 04, 10-15.	1.1	6
40	Effect of oxidative treatment of carbon black on electrochemical activity of cytochrome c. Analytical Methods, 2012, 4, 1623.	2.7	4
41	Influence of heat-treatment of Ketjen Black on the oxygen reduction reaction of Pt/C catalysts. Journal of Power Sources, 2012, 220, 173-179.	7.8	22
42	A quantitative analysis of a trace amount of hydrogen in high temperature heat-treated carbons. Carbon, 2012, 50, 3310-3314.	10.3	12
43	Formation of uniformly and finely dispersed nanoshells by carbonization of cobalt-coordinated oxine–formaldehyde resin and their electrochemical oxygen reduction activity. Carbon, 2012, 50, 2941-2952.	10.3	37
44	Carbon deposition on a Ni/Al2O3 catalyst in low-temperature gasification using C6-hydrocarbons as surrogate biomass tar. Fuel Processing Technology, 2012, 102, 30-34.	7.2	14
45	Indirect contribution of transition metal towards oxygen reduction reaction activity in iron phthalocyanine-based carbon catalysts for polymer electrolyte fuel cells. Electrochimica Acta, 2012, 74, 254-259.	5.2	59
46	Role of residual transition-metal atoms in oxygen reduction reaction in cobalt phthalocyanine-based carbon cathode catalysts for polymer electrolyte fuel cell. Journal of Power Sources, 2011, 196, 8346-8351.	7.8	38
47	X-ray photoemission spectroscopy analysis of N-containing carbon-based cathode catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 2011, 196, 1006-1011.	7.8	98
48	Adsorption of cytochrome c on nanoshell carbon. Carbon, 2011, 49, 4505-4510.	10.3	9
49	Electronic Structures of Non-Pt Carbon Alloy Catalysts for Polymer Electrolyte Membrane Fuel Cells Revealed by Synchrotron Radiation Analyses. Materials Research Society Symposia Proceedings, 2011, 1318, 1.	0.1	1
50	Formation of non-planar carbon layers in naphthalene-pitch-derived carbon by addition of fullerene mixture and its influence on electrochemical oxygen reduction reaction. Tanso, 2011, 2011, 102-104.	0.1	14
51	Preparation of Carbon Alloy Catalysts from a Polyhydroxyamide with Iron Phthalocyanine via a Poly-biphenylenebisoxazole Composite. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 459-464.	0.3	6
52	Enhancement of oxygen reduction activity of nanoshell carbons by introducing nitrogen atoms from metal phthalocyanines. Electrochimica Acta, 2010, 55, 1864-1871.	5.2	164
53	Preparation of carbon alloy catalysts for polymer electrolyte fuel cells from nitrogen-containing rigid-rod polymers. Journal of Power Sources, 2010, 195, 5947-5951.	7.8	67
54	Nitrogenâ€Doped Carbon Materials Prepared by Ammoxidation as Solid Base Catalysts for Knoevenagel Condensation and Transesterification Reactions. Advanced Synthesis and Catalysis, 2010, 352, 1476-1484.	4.3	92

#	Article	IF	CITATIONS
55	Hydrogen production by steam reforming of acetic acid: Comparison of conventional supported metal catalysts and metal-incorporated mesoporous smectite-like catalysts. International Journal of Hydrogen Energy, 2010, 35, 110-117.	7.1	66
56	Influence of Fe2O3 and CaCO3 Addition on the Coking of Gooneylla Coal. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2010, 96, 249-257.	0.4	5
57	Electrochemical Oxygen Reduction on Carbon Nitride. ECS Transactions, 2010, 28, 11-26.	0.5	5
58	Multistep Pyrolysis of Fe Phthalocyanine and Phenolic Resin for Nonprecious Metal Cathode Catalysts. ECS Transactions, 2010, 33, 587-593.	0.5	0
59	Electric Double-Layer Capacitors from Activated Carbon Derived from Black Liquor. Energy & Fuels, 2010, 24, 1889-1893.	5.1	27
60	Enhanced Catalytic Activity of Carbon Alloy Catalysts Codoped with Boron and Nitrogen for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2010, 114, 8933-8937.	3.1	70
61	Study on Low CTE Materials for FC-BGA Substrate. Journal of Japan Institute of Electronics Packaging, 2010, 13, 543-551.	0.1	0
62	The Role of Fe in the Preparation of Carbon Alloy Cathode Catalysts. ECS Transactions, 2009, 25, 463-467.	0.5	23
63	X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 2009, 187, 93-97.	7.8	448
64	Dispersibility in organic solvents of nanosized silica particles used in semiconductor package substrates. Chemical Engineering Journal, 2009, 155, 493-498.	12.7	6
65	First-principles calculation of the electronic properties of graphene clusters doped with nitrogen and boron: Analysis of catalytic activity for the oxygen reduction reaction. Physical Review B, 2009, 80, .	3.2	177
66	Carbon Nitride as a Nonprecious Catalyst for Electrochemical Oxygen Reduction. Journal of Physical Chemistry C, 2009, 113, 20148-20151.	3.1	341
67	Electrochemical behavior of carbon nanorod arrays having different graphene orientations and crystallinity. Journal of Materials Chemistry, 2009, 19, 4615.	6.7	19
68	Novel N-Doped Carbon Cathode Catalyst for Polymer Electrolyte Membrane Fuel Cells Formed on Carbon Black. Chemistry Letters, 2009, 38, 396-397.	1.3	21
69	Electron microscopic studies on disintegration of core/shell polymer structure during heat treatment process in carbon nanotube preparation by polymer blend technique. Tanso, 2009, 2009, 57-60.	0.1	0
70	Carbon Alloy Catalysts: Active Sites for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2008, 112, 14706-14709.	3.1	474
71	Investigation on Deactivation and Regeneration of a Commercial Ni/Al2O3 Catalyst in Coal Volatile Decomposition. Journal of Chemical Engineering of Japan, 2008, 41, 915-922.	0.6	6
72	Preparation of BN-doped carbon blacks by mechanochemical alloying of carbon and h-BN and its use as a catalyst for the oxygen reduction. Tanso, 2007, 2007, 153-157.	0.1	14

#	Article	IF	CITATIONS
73	Preparation and oxygen reduction activity of BN-doped carbons. Carbon, 2007, 45, 1847-1853.	10.3	310
74	Differences in the Coking and Non-coking Coals from the Standpoint of Carbon Structure. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2006, 92, 157-163.	0.4	4
75	Preparation of ZSM-5 nanoparticles supported on carbon substrate. Carbon, 2006, 44, 1243-1249.	10.3	6
76	Enhancement of oxygen reduction activity by carbonization of furan resin in the presence of phthalocyanines. Carbon, 2006, 44, 1324-1326.	10.3	109
77	Simultaneous doping of boron and nitrogen into a carbon to enhance its oxygen reduction activity in proton exchange membrane fuel cells. Carbon, 2006, 44, 3358-3361.	10.3	153
78	A study on pyrolysis and cross-link formation of poly(p-phenylene butadiyne) by thermoanalysis and spectroscopy. Journal of Analytical and Applied Pyrolysis, 2006, 77, 56-62.	5.5	8
79	Structures, physicochemical properties and oxygen reduction activities of carbons derived from ferrocene-poly(furfuryl alcohol) mixtures. Journal of Applied Electrochemistry, 2006, 36, 239-247.	2.9	85
80	Carbon nanotubes prepared by meltspinningof core-shell polymer particles. Tanso, 2006, 2006, 333-335.	0.1	0
81	Thermoforming of Textile Composite Pipe Fittings. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2003, 46, 426-431.	0.4	1
82	Enhanced photoresponse of carbonaceous film/silicon junctions by doping with bromanil. Journal of Applied Physics, 2002, 91, 881-883.	2.5	1
83	Preparation of Porous Carbon from Lithium Acetylide. Tanso, 2002, 2002, 266-269.	0.1	0
84	H2S decomposition activity of TS carbon derived from furan resin. Carbon, 2001, 39, 1611-1612.	10.3	12
85	Supercritical Methanol Extraction of Loy Yang Coal Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2001, 80, 274-277.	0.2	0
86	Carbonization and Graphitization Behaviors of Fe-loaded Brown Coal and Electrocatalytic Activity of Derived Carbons. Tanso, 2001, 2001, 161-165.	0.1	2
87	FEM Deformation Analysis of Textile Composite Tubes in Thermoforming Process Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2000, 66, 2858-2863.	0.2	2
88	A TC-MS study of poly(vinyl butyral)/phenol-formaldehyde resin blend fiber. Carbon, 2000, 38, 1515-1519.	10.3	27
89	Chemical Recycling of Phenol Resin by Supercritical Methanol. Industrial & Engineering Chemistry Research, 2000, 39, 245-249.	3.7	72
90	Carbonization of iron-treated Loy Yang coal. Fuel, 1999, 78, 489-499.	6.4	8

JUN-ICHI OZAKI

#	Article	IF	CITATIONS
91	Spherical Shape Thermoforming of Textile Thermoplastic Composite Tube Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1999, 65, 3425-3430.	0.2	1
92	Deformation Mechanism and Bending Limit of Textile Composite Tubes in Roll Bending Process Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1999, 65, 4854-4859.	0.2	1
93	Development of Roll Bending Process for Textile Composite Tubes Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1999, 65, 4535-4540.	0.2	1

94 Effects of Ferrocene on Production of High Performance Carbon Electrodes from Poly(furfuryl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622

95	Controlling Factor of Electrocatalytic Activity of Iron-containing Carbon Materials. Chemistry Letters, 1998, 27, 573-574.	1.3	14
96	Role of carboxyl groups in the disintegration of brown coal briquettes by water sorption. Fuel Processing Technology, 1997, 50, 57-68.	7.2	18
97	Effects of metal ions on the thermal decomposition of brown coal. Fuel Processing Technology, 1996, 46, 183-194.	7.2	52
98	Bulge forming of braided thermoplastic composite tubes under axial compression and internal pressure. Polymer Composites, 1996, 17, 115-123.	4.6	4
99	Effects of surface treatment on cation exchange properties of Australian brown coals. Fuel Processing Technology, 1995, 43, 95-110.	7.2	41

100 Electrochemical Behavior of Iron-Carbon Composites Prepared from Ferrocene-Poly (furfuryl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 382 T

101	Dispersion and Optical Absorption of Au and Ag Particles Supported on an Amorphous SiO2 Substrate. Journal of Colloid and Interface Science, 1994, 168, 473-477.	9.4	13
102	Bulge Forming of FRTP Braided Tubes Using Fiber Orientation Rearrangement by Axial Compression Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1993, 59, 2863-2868.	0.2	1
103	The changes in the structure and some physical properties of mesocarbon microbeads by heat treatment. Carbon, 1987, 25, 697-701.	10.3	21