
## **Erwin Dehouck**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3050584/publications.pdf Version: 2024-02-01



FOWIN DEHOLICK

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Redox stratification of an ancient lake in Gale crater, Mars. Science, 2017, 356, .                                                                                                           | 12.6 | 209       |
| 2  | The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description.<br>Space Science Reviews, 2021, 217, 1.                                                   | 8.1  | 131       |
| 3  | Oxia Planum: The Landing Site for the ExoMars "Rosalind Franklin―Rover Mission: Geological Context<br>and Prelanding Interpretation. Astrobiology, 2021, 21, 345-366.                         | 3.0  | 84        |
| 4  | Constraints on abundance, composition, and nature of Xâ€ray amorphous components of soils and rocks at Gale crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 2640-2657.   | 3.6  | 73        |
| 5  | Desiccation cracks provide evidence of lake drying on Mars, Sutton Island member, Murray formation,<br>Gale Crater. Geology, 2018, 46, 515-518.                                               | 4.4  | 71        |
| 6  | Quantification of water content by laser induced breakdown spectroscopy on Mars. Spectrochimica<br>Acta, Part B: Atomic Spectroscopy, 2017, 130, 82-100.                                      | 2.9  | 65        |
| 7  | Evaluating the role of sulfide-weathering in the formation of sulfates or carbonates on Mars.<br>Geochimica Et Cosmochimica Acta, 2012, 90, 47-63.                                            | 3.9  | 62        |
| 8  | Evidence for weathering on early Mars from a comparison with terrestrial weathering profiles.<br>Icarus, 2011, 216, 257-268.                                                                  | 2.5  | 59        |
| 9  | Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars. Icarus, 2020, 336, 113436.                                                   | 2.5  | 59        |
| 10 | Late Hesperian aqueous alteration at Majuro crater, Mars. Planetary and Space Science, 2012, 72, 18-30.                                                                                       | 1.7  | 52        |
| 11 | Chemical alteration of fine-grained sedimentary rocks at Gale crater. Icarus, 2019, 321, 619-631.                                                                                             | 2.5  | 52        |
| 12 | Geochemistry of the Bagnold dune field as observed by ChemCam and comparison with other aeolian<br>deposits at Gale Crater. Journal of Geophysical Research E: Planets, 2017, 122, 2144-2162. | 3.6  | 46        |
| 13 | Ismenius Cavus, Mars: A deep paleolake with phyllosilicate deposits. Planetary and Space Science, 2010, 58, 941-946.                                                                          | 1.7  | 44        |
| 14 | Martian Eolian Dust Probed by ChemCam. Geophysical Research Letters, 2018, 45, 10,968.                                                                                                        | 4.0  | 40        |
| 15 | Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy.<br>Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 188, 106347.                        | 2.9  | 40        |
| 16 | In Situ Analysis of Opal in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2018, 123,<br>1955-1972.                                                                           | 3.6  | 36        |
| 17 | Sediment geochemistry and mineralogy from a glacial terrain river system in southwest Iceland.<br>Geochimica Et Cosmochimica Acta, 2019, 263, 140-166.                                        | 3.9  | 36        |
| 18 | Morphological and Spectral Diversity of the Clay-Bearing Unit at the ExoMars Landing Site Oxia<br>Planum. Astrobiology, 2021, 21, 464-480.                                                    | 3.0  | 35        |

**ERWIN DEHOUCK** 

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy. Spectrochimica<br>Acta, Part B: Atomic Spectroscopy, 2017, 137, 13-22.                                                                                       | 2.9  | 34        |
| 20 | Chemical variability in mineralized veins observed by ChemCam on the lower slopes of Mount Sharp in<br>Gale crater, Mars. Icarus, 2018, 311, 69-86.                                                                                            | 2.5  | 34        |
| 21 | Stability and fate of ferrihydrite during episodes of water/rock interactions on early Mars: An experimental approach. Journal of Geophysical Research E: Planets, 2017, 122, 358-382.                                                         | 3.6  | 33        |
| 22 | Weathering of olivine under CO2 atmosphere: A martian perspective. Geochimica Et Cosmochimica Acta, 2014, 135, 170-189.                                                                                                                        | 3.9  | 30        |
| 23 | Analyses of Highâ€Iron Sedimentary Bedrock and Diagenetic Features Observed With ChemCam at Vera<br>Rubin Ridge, Gale Crater, Mars: Calibration and Characterization. Journal of Geophysical Research E:<br>Planets, 2020, 125, e2019JE006314. | 3.6  | 30        |
| 24 | Iron Mobility During Diagenesis at Vera Rubin Ridge, Gale Crater, Mars. Journal of Geophysical<br>Research E: Planets, 2020, 125, e2019JE006299.                                                                                               | 3.6  | 30        |
| 25 | In situ recording of Mars soundscape. Nature, 2022, 605, 653-658.                                                                                                                                                                              | 27.8 | 30        |
| 26 | The Curiosity Rover's Exploration of Glen Torridon, Gale Crater, Mars: An Overview of the Campaign and Scientific Results. Journal of Geophysical Research E: Planets, 2023, 128, .                                                            | 3.6  | 27        |
| 27 | Deriving Amorphous Component Abundance and Composition of Rocks and Sediments on Earth and<br>Mars. Journal of Geophysical Research E: Planets, 2018, 123, 2485-2505.                                                                          | 3.6  | 26        |
| 28 | Mineralogical record of the redox conditions on early Mars. Icarus, 2016, 271, 67-75.                                                                                                                                                          | 2.5  | 23        |
| 29 | Xâ€Ray Amorphous Components in Sedimentary Rocks of Gale Crater, Mars: Evidence for Ancient<br>Formation and Longâ€Lived Aqueous Activity. Journal of Geophysical Research E: Planets, 2021, 126,<br>e2020JE006782.                            | 3.6  | 22        |
| 30 | From Lake to River: Documenting an Environmental Transition Across the Jura/Knockfarril Hill<br>Members Boundary in the Glen Torridon Region of Gale Crater (Mars). Journal of Geophysical<br>Research E: Planets, 2022, 127, .                | 3.6  | 19        |
| 31 | Formation of clay minerals on Mars: Insights from long-term experimental weathering of olivine.<br>Icarus, 2018, 311, 210-223.                                                                                                                 | 2.5  | 17        |
| 32 | Bedrock Geochemistry and Alteration History of the Clayâ€Bearing Glen Torridon Region of Gale Crater,<br>Mars. Journal of Geophysical Research E: Planets, 2022, 127, .                                                                        | 3.6  | 17        |
| 33 | Overview of the Morphology and Chemistry of Diagenetic Features in the Clayâ€Rich Glen Torridon Unit<br>of Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .                                                         | 3.6  | 17        |
| 34 | Geochemical constraints on the presence of clay minerals in the Burns formation, Meridiani Planum,<br>Mars. Icarus, 2017, 281, 137-150.                                                                                                        | 2.5  | 16        |
| 35 | Improving ChemCam LIBS long-distance elemental compositions using empirical abundance trends.<br>Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 182, 106247.                                                                          | 2.9  | 16        |
| 36 | Benzoic Acid as the Preferred Precursor for the Chlorobenzene Detected on Mars: Insights from the<br>Unique Cumberland Analog Investigation. Planetary Science Journal, 2020, 1, 41.                                                           | 3.6  | 12        |

**ERWIN DEHOUCK** 

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Laser-Induced Breakdown Spectroscopy (LIBS) characterization of granular soils: Implications for ChemCam analyses at Gale crater, Mars. Icarus, 2021, 365, 114481.                                                                    | 2.5 | 11        |
| 38 | An Insight Into Ancient Aeolian Processes and Postâ€Noachian Aqueous Alteration in Gale Crater, Mars,<br>Using ChemCam Geochemical Data From the Greenheugh Capping Unit. Journal of Geophysical Research<br>E: Planets, 2022, 127, . | 3.6 | 11        |
| 39 | Xâ€Ray Amorphous Sulfurâ€Bearing Phases in Sedimentary Rocks of Gale Crater, Mars. Journal of<br>Geophysical Research E: Planets, 2022, 127, .                                                                                        | 3.6 | 10        |
| 40 | Investigating the role of anhydrous oxidative weathering on sedimentary rocks in the Transantarctic<br>Mountains and implications for the modern weathering of sedimentary lithologies on Mars. Icarus,<br>2019, 319, 669-684.        | 2.5 | 8         |
| 41 | Diagenesis Revealed by Fineâ€6cale Features at Vera Rubin Ridge, Gale Crater, Mars. Journal of<br>Geophysical Research E: Planets, 2021, 126, e2019JE006311.                                                                          | 3.6 | 7         |
| 42 | Clustering Supported Classification of ChemCam Data From Gale Crater, Mars. Earth and Space Science, 2021, 8, .                                                                                                                       | 2.6 | 7         |
| 43 | ROMA: A Database of Rock Reflectance Spectra for Martian In Situ Exploration. Earth and Space Science, 2022, 9, .                                                                                                                     | 2.6 | 6         |
| 44 | Mars Crater Database: A participative project for the classification of the morphological characteristics of large Martian craters. , 2021, , 629-644.                                                                                |     | 5         |
| 45 | Martian meteorites reflectance and implications for rover missions. Icarus, 2021, 366, 114517.                                                                                                                                        | 2.5 | 5         |