Yadu Pokhrel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3049995/publications.pdf

Version: 2024-02-01

147801 123424 4,123 63 31 61 h-index citations g-index papers 89 89 89 4122 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 2021, 11, 226-233.	18.8	345
2	Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nature Communications, $2017, 8, 15697$.	12.8	287
3	Incorporating Anthropogenic Water Regulation Modules into a Land Surface Model. Journal of Hydrometeorology, 2012, 13, 255-269.	1.9	226
4	Globally observed trends in mean and extreme river flow attributed to climate change. Science, 2021, 371, 1159-1162.	12.6	213
5	Model estimates of sea-level change due toÂanthropogenic impacts on terrestrial waterÂstorage. Nature Geoscience, 2012, 5, 389-392.	12.9	201
6	Human–water interface in hydrological modelling: current status and future directions. Hydrology and Earth System Sciences, 2017, 21, 4169-4193.	4.9	171
7	AÂglobal hydrological simulation to specify the sources of water used by humans. Hydrology and Earth System Sciences, 2018, 22, 789-817.	4.9	170
8	State-of-the-art global models underestimate impacts from climate extremes. Nature Communications, 2019, 10, 1005.	12.8	168
9	Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts. Water Resources Research, 2015, 51, 78-96.	4.2	162
10	A Review of the Integrated Effects of Changing Climate, Land Use, and Dams on Mekong River Hydrology. Water (Switzerland), 2018, 10, 266.	2.7	155
11	Role of dams in reducing global flood exposure under climate change. Nature Communications, 2021, 12, 417.	12.8	129
12	Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. Journal of Hydrology, 2018, 560, 342-353.	5.4	116
13	Recent progresses in incorporating human land–water management into global land surface models toward their integration into Earth system models. Wiley Interdisciplinary Reviews: Water, 2016, 3, 548-574.	6.5	110
14	The critical role of the routing scheme in simulating peak river discharge in global hydrological models. Environmental Research Letters, 2017, 12, 075003.	5.2	105
15	Human impact parameterizations in global hydrological models improve estimates of monthly discharges and hydrological extremes: a multi-model validation study. Environmental Research Letters, 2018, 13, 055008.	5.2	91
16	Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts. Environmental Research Letters, 2018, 13, 065015.	5 . 2	85
17	The role of groundwater in the Amazon water cycle: 3. Influence on terrestrial water storage computations and comparison with GRACE. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3233-3244.	3.3	83
18	The timing of unprecedented hydrological drought under climate change. Nature Communications, 2022, 13, .	12.8	77

#	Article	IF	CITATIONS
19	Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data. Remote Sensing of Environment, 2018, 204, 197-211.	11.0	75
20	Improving maize growth processes in the community land model: Implementation and evaluation. Agricultural and Forest Meteorology, 2018, 250-251, 64-89.	4.8	71
21	Potential Disruption of Flood Dynamics in the Lower Mekong River Basin Due to Upstream Flow Regulation. Scientific Reports, 2018, 8, 17767.	3.3	71
22	Highâ∈Resolution Modeling of Reservoir Release and Storage Dynamics at the Continental Scale. Water Resources Research, 2019, 55, 787-810.	4.2	71
23	Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study. Hydrology and Earth System Sciences, 2021, 25, 787-810.	4.9	65
24	Natural infrastructure in sustaining global urban freshwater ecosystem services. Nature Sustainability, 2021, 4, 1068-1075.	23.7	62
25	High Resolution Modeling of Riverâ€Floodplainâ€Reservoir Inundation Dynamics in the Mekong River Basin. Water Resources Research, 2020, 56, e2019WR026449.	4.2	52
26	Multi-decadal hydrologic change and variability in the Amazon River basin: understanding terrestrial water storage variations and drought characteristics. Hydrology and Earth System Sciences, 2019, 23, 2841-2862.	4.9	48
27	Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication. Geoscientific Model Development, 2021, 14, 3843-3878.	3.6	41
28	Evapotranspiration simulations in ISIMIP2aâ€"Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets. Environmental Research Letters, 2018, 13, 075001.	5.2	38
29	Basinâ€Scale River Runoff Estimation From GRACE Gravity Satellites, Climate Models, and In Situ Observations: A Case Study in the Amazon Basin. Water Resources Research, 2020, 56, e2020WR028032.	4.2	36
30	A Quantitative Investigation of the Thresholds for Two Conventional Water Scarcity Indicators Using a Stateâ€ofâ€theâ€Art Global Hydrological Model With Human Activities. Water Resources Research, 2018, 54, 8279-8294.	4.2	34
31	Multimodel assessments of human and climate impacts on mean annual streamflow in China. Hydrology and Earth System Sciences, 2019, 23, 1245-1261.	4.9	34
32	Utilizing SMAP Soil Moisture Data to Constrain Irrigation in the Community Land Model. Geophysical Research Letters, 2018, 45, 12,892.	4.0	33
33	Global Heat Uptake by Inland Waters. Geophysical Research Letters, 2020, 47, e2020GL087867.	4.0	31
34	Vegetation dynamics and ecosystem service values changes at national and provincial scales in Nepal from 2000 to 2017. Environmental Development, 2019, 32, 100464.	4.1	29
35	Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia. Nature Communications, 2022, 13, 1849.	12.8	26
36	How evaluation of global hydrological models can help to improve credibility of river discharge projections under climate change. Climatic Change, 2020, 163, 1353-1377.	3.6	25

#	Article	IF	Citations
37	In-stream turbines for rethinking hydropower development in the Amazon basin. Nature Sustainability, 2021, 4, 680-687.	23.7	25
38	Divergent Causes of Terrestrial Water Storage Decline Between Drylands and Humid Regions Globally. Geophysical Research Letters, 2021, 48, .	4.0	23
39	Representing Intercell Lateral Groundwater Flow and Aquifer Pumping in the Community Land Model. Water Resources Research, 2021, 57, .	4.2	22
40	On the Precipitationâ€Induced Uncertainties in Processâ€Based Hydrological Modeling in the Mekong River Basin. Water Resources Research, 2022, 58, .	4.2	22
41	Basin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery. Remote Sensing of Environment, 2021, 255, 112281.	11.0	21
42	Alteration of River Flow and Flood Dynamics by Existing and Planned Hydropower Dams in the Amazon River Basin. Water Resources Research, 2022, 58, .	4.2	20
43	Performance evaluation of global hydrological models in six large Pan-Arctic watersheds. Climatic Change, 2020, 163, 1329-1351.	3.6	19
44	Past and Future Changes in Climate and Water Resources in the Lancang–Mekong River Basin: Current Understanding and Future Research Directions. Engineering, 2022, 13, 144-152.	6.7	19
45	A quantitative evaluation of the issue of drought definition: a source of disagreement in future drought assessments. Environmental Research Letters, 2021, 16, 104001.	5.2	18
46	Modeling Daily Floods in the Lancangâ€Mekong River Basin Using an Improved Hydrologicalâ€Hydrodynamic Model. Water Resources Research, 2021, 57, e2021WR029734.	4.2	17
47	Implications of changes in climate and human development on 21st-century global drought risk. Journal of Environmental Management, 2022, 317, 115378.	7.8	17
48	Hydrologic balance and inundation dynamics of Southeast Asia's largest inland lake altered by hydropower dams in the Mekong River basin. Science of the Total Environment, 2022, 831, 154833.	8.0	16
49	Future hydrology and hydrological extremes under climate change in Asian river basins. Scientific Reports, 2021, 11, 17089.	3.3	15
50	Hydrologic changes, dam construction, and the shift in dietary protein in the Lower Mekong River Basin. Journal of Hydrology, 2020, 581, 124454.	5.4	14
51	MIROC-INTEG-LAND version 1: a global biogeochemical land surface model with human water management, crop growth, and land-use change. Geoscientific Model Development, 2020, 13, 4713-4747.	3.6	14
52	Functional responses of fisheries to hydropower dams in the Amazonian Floodplain of the Madeira River. Journal of Applied Ecology, 2022, 59, 680-692.	4.0	11
53	Evaluating a reservoir parametrization in the vector-based global routing model mizuRoute (v2.0.1) for Earth system model coupling. Geoscientific Model Development, 2022, 15, 4163-4192.	3.6	11
54	The effects of annual precipitation and mean air temperature on annual runoff in global forest regions. Climatic Change, 2011, 108, 401-410.	3.6	9

#	Article	IF	Citations
55	Spatio-temporal dynamics of hydrologic changes in the Himalayan river basins of Nepal using high-resolution hydrological-hydrodynamic modeling. Journal of Hydrology, 2021, 598, 126209.	5.4	9
56	Multi-model ensemble projections of soil moisture drought over North Africa and the Sahel region under 1.5, 2, and 3°C global warming. Climatic Change, 2021, 167, 1.	3.6	9
57	Simulating the Impact of Global Reservoir Expansion on the Presentâ€Day Climate. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034485.	3.3	9
58	Multi-model evaluation of catchment- and global-scale hydrological model simulations of drought characteristics across eight large river catchments. Advances in Water Resources, 2022, 165, 104212.	3.8	5
59	Reply to 'Overestimated water storage'. Nature Geoscience, 2013, 6, 3-4.	12.9	4
60	Effect of Human-Induced Land Disturbance on Subseasonal Predictability of Near-Surface Variables Using an Atmospheric General Circulation Model. Atmosphere, 2019, 10, 725.	2.3	4
61	Feasibility of hybrid in-stream generator–photovoltaic systems for Amazonian off-grid communities. , 2022, 1, .		4
62	Quantifying the spatiotemporal dynamics of recharge in a composite Great Lakes watershed using a high-resolution hydrology model and multi-source data. Journal of Hydrology, 2021, 601, 126594.	5.4	2
63	SUB-SEASONAL HYDROLOGICAL FORECAST SKILLS IN A DROUGHT EVENT ASSOCIATED WITH LAND INITIALIZATIONS INCLUDING HUMAN ACTIVITIES IN AN ATMOSPHERIC GENERAL CIRCULATION MODEL. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2013, 69, I_1807-I_1812.	0.1	O