Hans Bakker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3048904/publications.pdf Version: 2024-02-01

HANG RAKKED

#	Article	IF	CITATIONS
1	A Bacterial Mannose Binding Lectin as a Tool for the Enrichment of C- and O-Mannosylated Peptides. Analytical Chemistry, 2022, 94, 7329-7338.	6.5	8
2	Involvement of Nâ€glycans in binding of <i>Photorhabdus luminescens</i> Tc toxin. Cellular Microbiology, 2021, 23, e13326.	2.1	7
3	Yersinia pseudotuberculosis cytotoxic necrotizing factor interacts with glycosaminoglycans. FASEB Journal, 2021, 35, e21647.	0.5	3
4	The C-Mannosylome of Human Induced Pluripotent Stem Cells Implies a Role for ADAMTS16 C-Mannosylation in Eye Development. Molecular and Cellular Proteomics, 2021, 20, 100092.	3.8	7
5	<i>C</i> -Mannosylation of <i>Toxoplasma gondii</i> proteins promotes attachment to host cells and parasite virulence. Journal of Biological Chemistry, 2020, 295, 1066-1076.	3.4	9
6	NMR Spectroscopic Characterization of the Câ€Mannose Conformation in a Thrombospondin Repeat Using a Selective Labeling Approach. Angewandte Chemie - International Edition, 2020, 59, 20659-20665.	13.8	12
7	NMR Spectroscopic Characterization of the Câ€Mannose Conformation in a Thrombospondin Repeat Using a Selective Labeling Approach. Angewandte Chemie, 2020, 132, 20840-20846.	2.0	3
8	Proteoglycan-Dependent Endo-Lysosomal Fusion Affects Intracellular Survival of Salmonella Typhimurium in Epithelial Cells. Frontiers in Immunology, 2020, 11, 731.	4.8	4
9	C-Mannosylation of Toxoplasma gondii proteins promotes attachment to host cells and parasite virulence. Journal of Biological Chemistry, 2020, 295, 1066-1076.	3.4	11
10	Membrane Topological Model of Glycosyltransferases of the GT-C Superfamily. International Journal of Molecular Sciences, 2019, 20, 4842.	4.1	28
11	C-mannosylation supports folding and enhances stability of thrombospondin repeats. ELife, 2019, 8, .	6.0	62
12	Apicomplexan C-Mannosyltransferases Modify Thrombospondin Type I-containing Adhesins of the TRAP Family. Glycobiology, 2018, 28, 333-343.	2.5	28
13	Sensitized genetic backgrounds reveal differential roles for EGF repeat xylosyltransferases in Drosophila Notch signaling. Glycobiology, 2018, 28, 849-859.	2.5	12
14	DistinctC-mannosylation of netrin receptor thrombospondin type 1 repeats by mammalian DPY19L1 and DPY19L3. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2574-2579.	7.1	68
15	A sweet development in Notch regulation. Journal of Biological Chemistry, 2017, 292, 15974-15975.	3.4	6
16	Cryptococcus neoformans UGT1encodes a UDP-Galactose/UDP-GalNAc transporter. Glycobiology, 2017, 27, 87-98.	2.5	20
17	Notch-modifying xylosyltransferase structures support an SNi-like retaining mechanism. Nature Chemical Biology, 2015, 11, 847-854.	8.0	60
18	<i>Arabidopsis</i> ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 291-296.	7.1	45

Hans Bakker

#	Article	IF	CITATIONS
19	UDP-Glucuronate Decarboxylase 1 (UXS1). , 2014, , 1439-1448.		2
20	UDP-Xylose and UDP-N-Acetylglucosamine Transporter (SLC35B4). , 2014, , 1393-1402.		0
21	Carbohydrate Sulfotransferase 10 (CHST10). , 2014, , 1035-1045.		0
22	In Vitro Assays of Orphan Glycosyltransferases and Their Application to Identify Notch Xylosyltransferases. Methods in Molecular Biology, 2013, 1022, 307-320.	0.9	4
23	C.Âelegans DPY-19 Is a C-Mannosyltransferase Clycosylating Thrombospondin Repeats. Molecular Cell, 2013, 50, 295-302.	9.7	106
24	Negative Regulation of Notch Signaling by Xylose. PLoS Genetics, 2013, 9, e1003547.	3.5	88
25	LARGE2 generates the same xylose- and glucuronic acid-containing glycan structures as LARGE. Glycobiology, 2013, 23, 303-309.	2.5	28
26	The Câ€mannosyltransferase. FASEB Journal, 2013, 27, 824.2.	0.5	1
27	Molecular Cloning of a Xylosyltransferase That Transfers the Second Xylose to O-Glucosylated Epidermal Growth Factor Repeats of Notch. Journal of Biological Chemistry, 2012, 287, 2739-2748.	3.4	76
28	Site-specific O-Glucosylation of the Epidermal Growth Factor-like (EGF) Repeats of Notch. Journal of Biological Chemistry, 2012, 287, 33934-33944.	3.4	68
29	"Add-on" domains of Drosophila β1,4-N-acetylgalactosaminyltransferase B in the stem region and its pilot protein. Cellular and Molecular Life Sciences, 2011, 68, 4091-4100.	5.4	5
30	ldentification of Glycosyltransferase 8 Family Members as Xylosyltransferases Acting on O-Glucosylated Notch Epidermal Growth Factor Repeats. Journal of Biological Chemistry, 2010, 285, 1582-1586.	3.4	112
31	Functional UDP-xylose Transport across the Endoplasmic Reticulum/Golgi Membrane in a Chinese Hamster Ovary Cell Mutant Defective in UDP-xylose Synthase. Journal of Biological Chemistry, 2009, 284, 2576-2583.	3.4	61
32	Golgi targeting of Drosophila melanogaster β4GalNAcTB requires a DHHC protein family–related protein as a pilot. Journal of Cell Biology, 2009, 184, 173-183.	5.2	20
33	A Syndrome with Congenital Neutropenia and Mutations in <i>G6PC3</i> . New England Journal of Medicine, 2009, 360, 32-43.	27.0	331
34	Distinct contributions of β4GalNAcTA and β4GalNAcTB to Drosophila glycosphingolipid biosynthesis. Glycoconjugate Journal, 2008, 25, 167-175.	2.7	19
35	A CMP-sialic acid transporter cloned from Arabidopsis thaliana. Carbohydrate Research, 2008, 343, 2148-2152.	2.3	42
36	A Single Caenorhabditis elegans Golgi Apparatus-Type Transporter of UDP-Glucose, UDP-Galactose, UDP-W-Galactose, UDP-N-Acetylglucosamine, and UDP-N-Acetylgalactosamine. Biochemistry, 2008, 47, 4337-4344.	2.5	25

HANS BAKKER

#	Article	IF	CITATIONS
37	Contribution of Galactofuranose to the Virulence of the Opportunistic Pathogen <i>Aspergillus fumigatus</i> . Eukaryotic Cell, 2008, 7, 1268-1277.	3.4	144
38	A Novel Clinical Syndrome Associating Severe Congenital Neutropenia and Complex Developmental Aberrations Caused by Deficiency of G6PC3. Blood, 2008, 112, 5-5.	1.4	3
39	Stereoselective Synthesis of the 3-Aminopropyl Glycosides of α- <scp>d</scp> -Xyl-(1→3)-β- <scp>d</scp> -Glc and α- <scp>d</scp> -Xyl-(1→3)-α- <scp>d</scp> -Xyl-(1→3)-β- <scp>d</scp> -Glc and of Their Corresponding <i>N</i> >Octanoyl Derivatives. Synthesis, 2007, 2007, 3147-3154.	2.3	7
40	Efficient introduction of a bisecting GlcNAc residue in tobacco N-glycans by expression of the gene encoding human N-acetylglucosaminyltransferase III. Glycobiology, 2007, 17, 334-344.	2.5	61
41	An antibody produced in tobacco expressing a hybrid beta-1,4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7577-7582.	7.1	134
42	Functional expression of the CMP-sialic acid transporter in Escherichia coli and its identification as a simple mobile carrier. Glycobiology, 2005, 16, 73-81.	2.5	25
43	The Human Solute Carrier Gene SLC35B4 Encodes a Bifunctional Nucleotide Sugar Transporter with Specificity for UDP-Xylose and UDP-N-Acetylglucosamine. Journal of Biological Chemistry, 2005, 280, 27230-27235.	3.4	100
44	Endoplasmic reticulum retention of the large splice variant of the UDP-galactose transporter is caused by a dilysine motif. Glycobiology, 2005, 15, 905-911.	2.5	49
45	Identification and partial characterization of two eukaryotic UDP-galactopyranose mutases. Biological Chemistry, 2005, 386, 657-61.	2.5	60
46	Molecular cloning of two Arabidopsis UDP-galactose transporters by complementation of a deficient Chinese hamster ovary cell line. Glycobiology, 2004, 15, 193-201.	2.5	47
47	Enteral Drug Absorption in Patients with Short Small Bowel. Clinical Pharmacokinetics, 2004, 43, 951-962.	3.5	58
48	Nucleotide sugar transporters: Biological and functional aspects. Biochimie, 2001, 83, 775-782.	2.6	92
49	Plant members of the α1→3/4-fucosyltransferase gene family encode an α1→4-fucosyltransferase, potentially involved in Lewisabiosynthesis, and two core α1→3-fucosyltransferases1. FEBS Letters, 2001, 507, 307-312.	2.8	52
50	Influence of Growth Conditions and Developmental Stage onN-Glycan Heterogeneity of Transgenic Immunoglobulin G and Endogenous Proteins in Tobacco Leaves. Plant Physiology, 2001, 126, 1314-1322.	4.8	95
51	Galactose-extended glycans of antibodies produced by transgenic plants. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2899-2904.	7.1	314
52	Effect of Climate Conditions and Plant Developmental Stage on the Stability of Antibodies Expressed in Transgenic Tobacco. Plant Physiology, 2000, 124, 173-182.	4.8	128
53	An Arabidopsis thaliana cDNA Complements the N-Acetylglucosaminyltransferase I Deficiency of CHO Lec1 Cells. Biochemical and Biophysical Research Communications, 1999, 261, 829-832.	2.1	29
54	Molecular cloning of a human cDNA encoding Â-1,4-galactosyltransferase with 37% identity to mammalian UDP-Gal:GlcNAc Â-1,4-galactosyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 472-477.	7.1	125

HANS BAKKER

#	Article	IF	CITATIONS
55	Novel Pathways in Complex-Type Oligosaccharide Synthesis. Advances in Experimental Medicine and Biology, 1998, 435, 3-7.	1.6	11
56	The substrate specificity of the snail Lymnaea stagnalis UDP-GlcNAc:GlcNAcβ-R β4-N-acetylglucosaminyltransferase reveals a novel variant pathway of complex-type oligosaccharide synthesis. Glycobiology, 1997, 7, 539-548.	2.5	27
57	Letter to the Glyco-Forum. Glycobiology, 1997, 7, 1053-1053.	2.5	17
58	Deletion of Two Exons from the Lymnaea stagnalis β1→4-N-Acetylglucosaminyltransferase Gene Elevates the Kinetic Efficiency of the Encoded Enzyme for Both UDP-sugar Donor and Acceptor Substrates. Journal of Biological Chemistry, 1997, 272, 18580-18585.	3.4	22
59	Expression Cloning of a cDNA Encoding a Sulfotransferase Involved in the Biosynthesis of the HNK-1 Carbohydrate Epitope. Journal of Biological Chemistry, 1997, 272, 29942-29946.	3.4	109
60	Novel pathways in complex-type oligosaccharide synthesis: new vistas opened by studies in invertebrates. Biochemical Society Transactions, 1997, 25, 887-893.	3.4	33
61	Glycosylation in Lepidopteran insect cells: identification of a β1→4-N-acetylgalactosaminyltransferase involved in the synthesis of complex-type oligosaccharide chains. Glycobiology, 1996, 6, 157-164.	2.5	90
62	Novel glycosylation routes for glycoproteins: the lacdiNAc pathway. Biochemical Society Transactions, 1995, 23, 175-179.	3.4	61
63	Control and Function of Complex-Type Oligosaccharide Synthesis. Advances in Experimental Medicine and Biology, 1995, 376, 47-52.	1.6	9
64	Sequence of the ferredoxin-NADP+-reductase gene fromAnabaenaPCC 7119. Nucleic Acids Research, 1990, 18, 7161-7161.	14.5	44