Dun-Jun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3048080/publications.pdf

Version: 2024-02-01

279798 315739 1,990 114 23 38 citations h-index g-index papers 116 116 116 2099 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	1.2 kV/25 A Normally off P-N Junction/AlGaN/GaN HEMTs With Nanosecond Switching Characteristics and Robust Overvoltage Capability. IEEE Transactions on Power Electronics, 2022, 37, 26-30.	7.9	18
2	Over 1200 V Normally-OFF p-NiO Gated AlGaN/GaN HEMTs on Si With a Small Threshold Voltage Shift. IEEE Electron Device Letters, 2022, 43, 268-271.	3.9	9
3	Tunable tunneling magnetoresistance in in-plane double barrier magnetic tunnel junctions based on B vacancy h-NB nanoribbons. Physical Chemistry Chemical Physics, 2022, 24, 3451-3459.	2.8	2
4	Highly responsive and selective ppb-level NO ₂ gas sensor based on porous Pd-functionalized CuO/rGO at room temperature. Journal of Materials Chemistry C, 2022, 10, 3756-3769.	5.5	27
5	Achieving Record High External Quantum Efficiency >86.7% in Solarâ€Blind Photoelectrochemical Photodetection. Advanced Functional Materials, 2022, 32, .	14.9	23
6	The Sensing Mechanism of InAlN/GaN HEMT. Crystals, 2022, 12, 401.	2.2	1
7	3-D Simulation Study of a Normally-OFF GaN Lateral Multi-Channel JFET With Optimized Electrical Field Transfer Terminal Structure. IEEE Transactions on Electron Devices, 2022, 69, 1918-1923.	3.0	1
8	Normally-off GaN HEMTs with InGaN p-gate cap layer formed by polarization doping. Applied Physics Express, 2022, 15, 016502.	2.4	5
9	4H-SiC $\langle i \rangle \hat{l}' \langle i \rangle$ n-i-p Extreme Ultraviolet Detector With Gradient Doping-Induced Surface Junction. IEEE Electron Device Letters, 2022, 43, 906-909.	3.9	2
10	High-Responsivity and Fast-Response Ultraviolet Phototransistors Based on Enhanced p-GaN/AlGaN/GaN HEMTs. ACS Photonics, 2022, 9, 2040-2045.	6.6	14
11	Step-flow growth of Al droplet free AlN epilayers grown by plasma assisted molecular beam epitaxy. Journal Physics D: Applied Physics, 2022, 55, 364002.	2.8	6
12	Self-Assembly Nanopillar/Superlattice Hierarchical Structure: Boosting AlGaN Crystalline Quality and Achieving High-Performance Ultraviolet Avalanche Photodetector. ACS Applied Materials & Amp; Interfaces, 2022, 14, 33525-33537.	8.0	4
13	Evaluation on Temperature-Dependent Transient VT Instability in p-GaN Gate HEMTs under Negative Gate Stress by Fast Sweeping Characterization. Micromachines, 2022, 13, 1096.	2.9	6
14	3.4-kV AlGaN/GaN Schottky Barrier Diode on Silicon Substrate With Engineered Anode Structure. IEEE Electron Device Letters, 2021, 42, 208-211.	3.9	20
15	High-performance normally off p-GaN gate high-electron-mobility transistor with In0.17Al0.83N barrier layer design. Optical and Quantum Electronics, 2021, 53, 1.	3.3	7
16	High Performance Wide Angle DBR Design for Optoelectronic Devices. IEEE Photonics Journal, 2021, 13, 1-6.	2.0	6
17	High sensitivity x-ray detectors based on 4H-SiC p-i-n structure with $80 < i > \hat{1} / 4 < / i > m$ thick intrinsic layer. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	1.2	1
18	Investigations of Sidewall Passivation Technology on the Optical Performance for Smaller Size GaN-Based Micro-LEDs. Crystals, 2021, 11, 403.	2.2	19

#	Article	IF	Citations
19	Enhanced Stability and Sensitivity of AlGaN/GaN-HEMTs pH Sensor by Reference Device. IEEE Sensors Journal, 2021, 21, 9771-9776.	4.7	5
20	Highly solar-blind ultraviolet selective metal-semiconductor-metal photodetector based on back-illuminated AlGaN heterostructure with integrated photonic crystal filter. Applied Physics Letters, 2021, 118, .	3.3	8
21	Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light: Science and Applications, 2021, 10, 94.	16.6	193
22	High Performance Quasi-Vertical GaN Junction Barrier Schottky Diode with Zero Reverse Recovery and Rugged Avalanche Capability., 2021,,.		6
23	A High Quantum Efficiency Narrow-Band UV-B AlGaN p-i-n Photodiode With Polarization Assistance. IEEE Photonics Journal, 2021, 13, 1-8.	2.0	5
24	An improved design for e-mode AlGaN/GaN HEMT with gate stack \hat{l}^2 -Ga2O3/p-GaN structure. Journal of Applied Physics, 2021, 130, .	2.5	12
25	High-Voltage Quasi-Vertical GaN Junction Barrier Schottky Diode With Fast Switching Characteristics. IEEE Electron Device Letters, 2021, 42, 974-977.	3.9	29
26	46.4: Fabrication of InGaN/GaNâ€based nano‣EDs for display applications. Digest of Technical Papers SID International Symposium, 2021, 52, 568-568.	0.3	0
27	<i>V</i> \sub>T Shift and Recovery Mechanisms of p-GaN Gate HEMTs Under DC/AC Gate Stress Investigated by Fast Sweeping Characterization. IEEE Electron Device Letters, 2021, 42, 1508-1511.	3.9	17
28	Demonstration of Avalanche and Surge Current Robustness in GaN Junction Barrier Schottky Diode With 600-V/10-A Switching Capability. IEEE Transactions on Power Electronics, 2021, 36, 12163-12167.	7.9	19
29	NiO/AlGaN interface reconstruction and transport manipulation of p-NiO gated AlGaN/GaN HEMTs. Applied Physics Reviews, 2021, 8, .	11.3	9
30	Low-Voltage p-i-n GaN-Based Alpha-Particle Detector With High Energy Resolution. IEEE Electron Device Letters, 2021, 42, 1755-1758.	3.9	3
31	1000-W Resistive Energy Dissipating Capability Against Inductive Transients Demonstrated in Non-Avalanche AlGaN/GaN Schottky Diode. IEEE Electron Device Letters, 2021, 42, 1743-1746.	3.9	4
32	Hybrid Light Emitters and UV Solarâ€Blind Avalanche Photodiodes based on IIIâ€Nitride Semiconductors. Advanced Materials, 2020, 32, e1904354.	21.0	34
33	Synthesis and Properties of InGaN/GaN Multiple Quantum Well Nanowires on Si (111) by Molecular Beam Epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900729.	1.8	4
34	Electronic properties of arsenene nanoribbons for FET application. Optical and Quantum Electronics, 2020, 52, 1.	3.3	3
35	High-\${k}\$ HfO ₂ -Based AlGaN/GaN MIS-HEMTs With Y ₂ O ₃ Interfacial Layer for High Gate Controllability and Interface Quality. IEEE Journal of the Electron Devices Society, 2020, 8, 15-19.	2.1	19
36	Electronâ€Beamâ€Driven Illâ€Nitride Plasmonic Nanolasers in the Deepâ€UV and Visible Region. Small, 2020, 16, 1906205.	10.0	10

#	Article	IF	Citations
37	Different <i>I</i> àê" <i>V</i> Behaviors and Leakage Current Mechanisms in AlGaN Solar-Blind Ultraviolet Avalanche Photodiodes. ACS Applied Electronic Materials, 2020, 2, 2716-2720.	4.3	3
38	Direct observation of reach-through behavior in back-illuminated algan avalanche photodiode with separate absorption and multiplication structure. Journal Physics D: Applied Physics, 2020, 53, 425101.	2.8	3
39	Synthesis and Properties of InGaN/GaN Multiple Quantum Well Nanowires on Si (111) by Molecular Beam Epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2070028.	1.8	0
40	$\hat{l}\mu\text{-Ga2O3:}$ A Promising Candidate for High-Electron-Mobility Transistors. IEEE Electron Device Letters, 2020, , 1-1.	3.9	15
41	High-Performance 4H-SiC Schottky Photodiode With Semitransparent Grid-Electrode for EUV Detection. IEEE Photonics Technology Letters, 2020, 32, 791-794.	2.5	10
42	After-Pulse Characterizations of Geiger-Mode 4H-SiC Avalanche Photodiodes. IEEE Photonics Technology Letters, 2020, 32, 706-709.	2.5	5
43	Realization of regular resonance mode in GaN-based polygonal microdisks on Si. Journal of Applied Physics, 2020, 127, 113102.	2.5	3
44	Highâ∈Responsivity Graphene/4Hâ∈SiC Ultraviolet Photodetector Based on a Planar Junction Formed by the Dual Modulation of Electric and Light Fields. Advanced Optical Materials, 2020, 8, 2000559.	7.3	19
45	Do all screw dislocations cause leakage in GaN-based devices?. Applied Physics Letters, 2020, 116, .	3.3	38
46	Highly Enhanced Inductive Current Sustaining Capability and Avalanche Ruggedness in GaN p-i-n Diodes With Shallow Bevel Termination. IEEE Electron Device Letters, 2020, 41, 469-472.	3.9	16
47	1.4-kV Quasi-Vertical GaN Schottky Barrier Diode With Reverse <i>p-n</i> Junction Termination. IEEE Journal of the Electron Devices Society, 2020, 8, 316-320.	2.1	20
48	Multi-aperture anode based AlGaN/GaN Schottky barrier diodes with low turn-on voltage and high uniformity. Applied Physics Express, 2020, 13, 096502.	2.4	7
49	A High-Performance SiO ₂ /SiN <i>_x </i> 1-D Photonic Crystal UV Filter Used for Solar-Blind Photodetectors. IEEE Photonics Journal, 2019, 11, 1-7.	2.0	3
50	Precise Extraction of Dynamic <i>R</i> _{dson} Under High Frequency and High Voltage by a Double-Diode-Isolation Method. IEEE Journal of the Electron Devices Society, 2019, 7, 690-695.	2.1	10
51	Janus Ga ₂ SeTe: A Promising Candidate for Highly Efficient Solar Cells. Solar Rrl, 2019, 3, 1900321.	5.8	13
52	Effect of Very High-Fluence Proton Radiation on 6H-SiC Photoconductive Proton Detectors. IEEE Electron Device Letters, 2019, 40, 1929-1932.	3.9	10
53	Nanoplasmonically Enhanced High-Performance Metastable Phase α-Ga ₂ O ₃ Solar-Blind Photodetectors. ACS Applied Materials & Solar-Blind Photodetectors.	8.0	31
54	Gate Reliability of p-GaN Gate AlGaN/GaN High Electron Mobility Transistors. IEEE Electron Device Letters, 2019, 40, 379-382.	3.9	21

#	Article	IF	CITATIONS
55	Performance Modulation for Back-Illuminated AlGaN Ultraviolet Avalanche Photodiodes Based on Multiplication Scaling. IEEE Photonics Journal, 2019, 11, 1-7.	2.0	10
56	Performance of Monolayer Blue Phosphorene Double-Gate MOSFETs from the First Principles. ACS Applied Materials & Double-Gate MOSFETs from the First Principles. ACS Applied Materials & Double-Gate MOSFETs from the First Principles. ACS Applied Materials & Double-Gate MOSFETs from the First Principles. ACS Applied Materials & Double-Gate MOSFETs from the First Principles. ACS Applied Materials & Double-Gate MOSFETs from the First Principles. ACS Applied Materials & Double-Gate MOSFETs from the First Principles. ACS Applied Materials & Double-Gate MOSFETs from the First Principles. ACS Applied Materials & Double-Gate MOSFETs from the First Principles. ACS Applied Materials & Double-Gate MOSFETs from the First Principles. ACS Applied Materials & Double-Gate MOSFETs from the First Principles. ACS Applied Materials & Double-Gate MOSFETs from the First Principles. ACS Applied Materials & Double-Gate MOSFETs from the First Principles. ACS Applied Materials & Double-Gate MOSFETS from the First Principles. ACS Applied Materials & Double-Gate MOSFETS from the First Principles fr	8.0	39
57	Investigation on the Activation Energy of Device Degradation and Switching Time in AlGaN/GaN HEMTs for High-Frequency Application. IEEE Journal of the Electron Devices Society, 2019, 7, 417-424.	2.1	5
58	Spatial Non-Uniform Hot Carrier Luminescence From 4H-SiC p-i-n Avalanche Photodiodes. IEEE Photonics Technology Letters, 2019, 31, 447-450.	2.5	6
59	Observation and Modeling of Leakage Current in AlGaN Ultraviolet Light Emitting Diodes. IEEE Photonics Technology Letters, 2019, 31, 1697-1700.	2.5	4
60	Effects of dissipative substrate on the performances of enhancement mode AlInN/GaN HEMTs. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2019, 32, e2482.	1.9	4
61	Magnesium ion-implantation-based gallium nitride p-i-n photodiode for visible-blind ultraviolet detection. Photonics Research, 2019, 7, B48.	7. O	36
62	Vertical 4H-SiC n-i-p-n APDs With Partial Trench Isolation. IEEE Photonics Technology Letters, 2018, 30, 805-808.	2.5	9
63	A Reusable and High Sensitivity Nitrogen Dioxide Sensor Based on Monolayer SnSe. IEEE Electron Device Letters, 2018, 39, 599-602.	3.9	43
64	Improvement of Power Performance of GaN HEMT by Using Quaternary InAlGaN Barrier. IEEE Journal of the Electron Devices Society, 2018, 6, 360-364.	2.1	26
65	Effective suppression of the high temperature DC performance degradation of AllnN/GaN HEMTs by back barrier. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2018, 31, e2299.	1.9	1
66	Effects of the Trap Level in the Unintentionally Doped GaN Buffer Layer on Optimized pâ€GaN Gate AlGaN/GaN HEMTs. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700368.	1.8	5
67	Avalanche Ruggedness of GaN p-i-n Diodes Grown on Sapphire Substrate. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800069.	1.8	7
68	Temperature Dependence of the Energy Band Diagram of AlGaN/GaN Heterostructure. Advances in Condensed Matter Physics, 2018, 2018, 1-4.	1.1	3
69	High Sensitive pH Sensor Based on AllnN/GaN Heterostructure Transistor. Sensors, 2018, 18, 1314.	3.8	13
70	Fine Control of the Electric Field Distribution in the Heterostructure Multiplication Region of AlGaN AvalancheÂPhotodiodes. IEEE Photonics Journal, 2017, 9, 1-7.	2.0	8
71	4H-SiC Ultraviolet Avalanche Photodiodes With Small Gain Slope and Enhanced Fill Factor. IEEE Photonics Journal, 2017, 9, 1-8.	2.0	8
72	Lasers: Manipulable and Hybridized, Ultralowâ€Threshold Lasing in a Plasmonic Laser Using Elliptical InGaN/GaN Nanorods (Adv. Funct. Mater. 37/2017). Advanced Functional Materials, 2017, 27, .	14.9	0

#	Article	IF	Citations
73	An Improved Design for Solar-Blind AlGaN Avalanche Photodiodes. IEEE Photonics Journal, 2017, 9, 1-7.	2.0	13
74	Manipulable and Hybridized, Ultralowâ€Threshold Lasing in a Plasmonic Laser Using Elliptical InGaN/GaN Nanorods. Advanced Functional Materials, 2017, 27, 1703198.	14.9	23
75	Photoluminescence Study of the Photoinduced Phase Separation in Mixed-Halide Hybrid Perovskite CH3NH3Pb(BrxI1â^'x)3 Crystals Synthesized via a Solvothermal Method. Scientific Reports, 2017, 7, 17695.	3.3	18
76	Single Photon Counting Spatial Uniformity of 4H-SiC APD Characterized by SNOM-Based Mapping System. IEEE Photonics Technology Letters, 2017, 29, 1603-1606.	2.5	10
77	4H–SiC Avalanche Photodiode Linear Array Operating in Geiger Mode. IEEE Photonics Journal, 2017, 9, 1-7.	2.0	13
78	Analysis of Dark Count Mechanisms of 4H-SiC Ultraviolet Avalanche Photodiodes Working in Geiger Mode. IEEE Transactions on Electron Devices, 2017, 64, 4532-4539.	3.0	16
79	A method of applying compressive preâ€stress to AlGaN barrier in AlGaN/GaN heterostructures by depositing an additional thermally mismatched dielectric. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2474-2478.	1.8	2
80	Enhanced InGaN/GaN photoelectrodes for visibleâ€lightâ€driven hydrogen generation by surface roughening. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2704-2708.	1.8	1
81	Improved Schottky contacts to InGaN alloys by a photoelectrochemical treatment. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1034-1038.	1.8	0
82	Highâ€voltage photoconductive semiconductor switches fabricated on semiâ€insulating HVPE GaN:Fe template. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 374-377.	0.8	7
83	High-Quality Crystal Growth and Characteristics of AlGaN-Based Solar-Blind Distributed Bragg Reflectors with a Tri-layer Period Structure. Scientific Reports, 2016, 6, 29571.	3.3	8
84	Highly selective and sensitive phosphate anion sensors based on AlGaN/GaN high electron mobility transistors functionalized by ion imprinted polymer. Scientific Reports, 2016, 6, 27728.	3.3	43
85	High Color Rendering Index Hybrid IIIâ€Nitride/Nanocrystals White Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 36-43.	14.9	58
86	4H-SiC SACM Avalanche Photodiode With Low Breakdown Voltage and High UV Detection Efficiency. IEEE Photonics Journal, 2016, 8, 1-7.	2.0	15
87	High Fill-Factor 4H-SiC Avalanche Photodiodes With Partial Trench Isolation. IEEE Photonics Technology Letters, 2016, 28, 2526-2528.	2.5	16
88	High-Performance 4H-SiC p-i-n Ultraviolet Photodiode With p Layer Formed by Al Implantation. IEEE Photonics Technology Letters, 2016, 28, 1189-1192.	2.5	16
89	Lightâ€Emitting Diodes: High Color Rendering Index Hybrid IIIâ€Nitride/Nanocrystals White Lightâ€Emitting Diodes (Adv. Funct. Mater. 1/2016). Advanced Functional Materials, 2016, 26, 156-156.	14.9	0
90	Significant improvements in InGaN/GaN nano-photoelectrodes for hydrogen generation by structure and polarization optimization. Scientific Reports, 2016, 6, 20218.	3.3	27

#	Article	IF	CITATIONS
91	Utilization of FIB Technique in TEM Specimen Preparation of GaN-based Devices for Dislocation Investigation. Microscopy and Microanalysis, 2015, 21, 1991-1992.	0.4	0
92	Determination of Temperature-Dependent Stress State in Thin AlGaN Layer of AlGaN/GaN HEMT Heterostructures by Near-Resonant Raman Scattering. Advances in Condensed Matter Physics, 2015, 2015, 1-6.	1.1	0
93	Demonstration of an AlGaN-based solar-blind high-voltage photoconductive switch. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 040601.	1.2	9
94	High-temperature and reliability performance of 4H-SiC Schottky-barrier photodiodes for UV detection. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	1.2	14
95	Large-Swing a-IGZO Inverter With a Depletion Load Induced by Laser Annealing. IEEE Electron Device Letters, 2014, 35, 1034-1036.	3.9	30
96	High-Temperature Single Photon Detection Performance of 4H-SiC Avalanche Photodiodes. IEEE Photonics Technology Letters, 2014, 26, 1136-1138.	2.5	53
97	Reverse leakage current in AlGaN-based ultraviolet light-emitting diodes. Science Bulletin, 2014, 59, 1276-1279.	1.7	6
98	Significant Performance Improvement in AlGaN Solar-Blind Avalanche Photodiodes by Exploiting the Built-In Polarization Electric Field. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 187-192.	2.9	30
99	Spatially localised luminescence emission properties induced by formation of ring-shaped quasi-potential trap around V-pits in InGaN epi-layers. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2823-2827.	1.8	11
100	Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultra-thin interfacial InGaZnO:N layer. Applied Physics Letters, 2013, 102, .	3.3	57
101	High Quantum Efficiency GaN-Based p-i-n Ultraviolet Photodetectors Prepared on Patterned Sapphire Substrates. IEEE Photonics Technology Letters, 2013, 25, 652-654.	2.5	45
102	Characteristics of polarization-doped N-face III-nitride light-emitting diodes. Applied Physics Letters, 2012, 100, 073507.	3.3	20
103	Improvements in Microstructure and Leakage Current of High-In-Content InGaN p-i-n Structure by Annealing. IEEE Photonics Technology Letters, 2012, 24, 1478-1480.	2.5	3
104	Ultra-Low Dark Current AlGaN-Based Solar-Blind Metalâ€"Semiconductorâ€"Metal Photodetectors for High-Temperature Applications. IEEE Sensors Journal, 2012, 12, 2086-2090.	4.7	75
105	Bias-Selective Dual-Operation-Mode Ultraviolet Schottky-Barrier Photodetectors Fabricated on High-Resistivity Homoepitaxial GaN. IEEE Photonics Technology Letters, 2012, 24, 2203-2205.	2.5	7
106	GaN MSM photodetectors fabricated on bulk GaN with low darkâ€current and high UV/visible rejection ratio. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2473-2475.	0.8	12
107	Field-dependent carrier trapping induced kink effect in AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2011, 98, .	3.3	40
108	Growth of Inâ€rich and Gaâ€rich InGaN alloys by MOCVD and fabrication of InGaNâ€based photoelectrodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1817-1820.	0.8	16

#	Article	IF	CITATIONS
109	Forward tunneling current in GaN-based blue light-emitting diodes. Applied Physics Letters, 2010, 96, .	3.3	77
110	On the reverse gate leakage current of AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2010, 97, .	3.3	115
111	Efficiency droop behavior of direct current aged GaN-based blue light-emitting diodes. Applied Physics Letters, 2009, 95, .	3.3	23
112	InGaN/GaN multi-quantum-well-based light-emitting and photodetective dual-functional devices. Frontiers of Optoelectronics in China, 2009, 2, 442-445.	0.2	1
113	Stable response to visible light of InGaN photoelectrodes. Applied Physics Letters, 2008, 92, 262110.	3.3	50
114	Gate-Controlled NiO/Graphene/4H-SiC Double Schottky Barrier Heterojunction Based on a Metal-Oxide-Semiconductor Structure for Dual-Mode and Wide Range Ultraviolet Detection. ACS Applied Electronic Materials, 0, , .	4.3	4