List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/304712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data. PLoS Genetics, 2010, 6, e1001116.	3.5	508
2	Consensus Statement on Chronic and Subacute High Altitude Diseases. High Altitude Medicine and Biology, 2005, 6, 147-157.	0.9	467
3	Human adaptation to high altitude: Regional and life-cycle perspectives. American Journal of Physical Anthropology, 1998, 107, 25-64.	2.1	296
4	Human Genetic Adaptation to High Altitude. High Altitude Medicine and Biology, 2001, 2, 257-279.	0.9	260
5	Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biology of Sex Differences, 2013, 4, 5.	4.1	259
6	Intrauterine Growth Restriction, Preeclampsia, and Intrauterine Mortality at High Altitude in Bolivia. Pediatric Research, 2003, 54, 20-25.	2.3	238
7	Altered blood pressure course during normal pregnancy and increased preeclampsia at high altitude (3100 meters) in Colorado. American Journal of Obstetrics and Gynecology, 1999, 180, 1161-1168.	1.3	225
8	Development of a Panel of Genome-Wide Ancestry Informative Markers to Study Admixture Throughout the Americas. PLoS Genetics, 2012, 8, e1002554.	3.5	212
9	A Genomewide Admixture Mapping Panel for Hispanic/Latino Populations. American Journal of Human Genetics, 2007, 80, 1171-1178.	6.2	206
10	Humans at high altitude: Hypoxia and fetal growth. Respiratory Physiology and Neurobiology, 2011, 178, 181-190.	1.6	204
11	Identifying positive selection candidate loci for high-altitude adaptation in Andean populations. Human Genomics, 2009, 4, 79-90.	2.9	195
12	Mitochondrial DNA analysis in Tibet: Implications for the origin of the Tibetan population and its adaptation to high altitude. American Journal of Physical Anthropology, 1994, 93, 189-199.	2.1	187
13	Tibetan protection from intrauterine growth restriction (IUGR) and reproductive loss at high altitude. American Journal of Human Biology, 2001, 13, 635-644.	1.6	163
14	Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7391-7396.	7.1	129
15	Measuring high-altitude adaptation. Journal of Applied Physiology, 2017, 123, 1371-1385.	2.5	125
16	Fetal Growth Restriction and Maternal Oxygen Transport during High Altitude Pregnancy. High Altitude Medicine and Biology, 2003, 4, 141-156.	0.9	123
17	Maternal Uterine Vascular Remodeling During Pregnancy. Microcirculation, 2014, 21, 38-47.	1.8	120
18	Systemic and renal hemodynamic changes in the luteal phase of the menstrual cycle mimic early pregnancy. American Journal of Physiology - Renal Physiology, 1997, 273, F777-F782.	2.7	115

#	Article	IF	CITATIONS
19	Andean and Tibetan patterns of adaptation to high altitude. American Journal of Human Biology, 2013, 25, 190-197.	1.6	115
20	Oxygen transport in Tibetan women during pregnancy at 3,658 m. American Journal of Physical Anthropology, 2001, 114, 42-53.	2.1	114
21	Protection from intrauterine growth retardation in Tibetans at high altitude. American Journal of Physical Anthropology, 1993, 91, 215-224.	2.1	111
22	Augmented uterine artery blood flow and oxygen delivery protect Andeans from altitude-associated reductions in fetal growth. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1564-R1575.	1.8	106
23	Lower uterine artery blood flow and higher endothelin relative to nitric oxide metabolite levels are associated with reductions in birth weight at high altitude. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R906-R915.	1.8	103
24	Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans. American Journal of Human Genetics, 2017, 101, 752-767.	6.2	99
25	Interleukin-6 response to exercise and high-altitude exposure: influence of α-adrenergic blockade. Journal of Applied Physiology, 2001, 91, 2143-2149.	2.5	98
26	Catecholamine response during 12 days of high-altitude exposure (4,300 m) in women. Journal of Applied Physiology, 1998, 84, 1151-1157.	2.5	97
27	Uterine artery blood flow, fetal hypoxia and fetal growth. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140068.	4.0	95
28	High-altitude ancestry protects against hypoxia-associated reductions in fetal growth. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2007, 92, F372-F377.	2.8	93
29	Women at altitude: short-term exposure to hypoxia and/or α ₁ -adrenergic blockade reduces insulin sensitivity. Journal of Applied Physiology, 2001, 91, 623-631.	2.5	89
30	Graduated effects of high-altitude hypoxia and highland ancestry on birth size. Pediatric Research, 2013, 74, 633-638.	2.3	84
31	Maternal <i>PRKAA1</i> and <i>EDNRA</i> genotypes are associated with birth weight, and <i>PRKAA1</i> with uterine artery diameter and metabolic homeostasis at high altitude. Physiological Genomics, 2014, 46, 687-697.	2.3	83
32	Y chromosome polymorphisms in Native American and Siberian populations: identification of Native American Y chromosome haplotypes. Human Genetics, 1997, 100, 536-543.	3.8	81
33	Greater uterine artery blood flow during pregnancy in multigenerational (Andean) than shorter-term (European) high-altitude residents. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1313-R1324.	1.8	81
34	Human Genetic Adaptation to High Altitude: Evidence from the Andes. Genes, 2019, 10, 150.	2.4	79
35	Increased vital and total lung capacities in Tibetan compared to Han residents of Lhasa (3,658 m). American Journal of Physical Anthropology, 1991, 86, 341-351.	2.1	77
36	Evolutionary adaptation to high altitude: A view from in utero. American Journal of Human Biology, 2009, 21, 614-622.	1.6	66

#	Article	IF	CITATIONS
37	Human genetic adaptation to high altitudes: Current status and future prospects. Quaternary International, 2017, 461, 4-13.	1.5	63
38	Women at altitude: energy requirement at 4,300 m. Journal of Applied Physiology, 2000, 88, 272-281.	2.5	57
39	Women at altitude: ventilatory acclimatization at 4,300 m. Journal of Applied Physiology, 2001, 91, 1791-1799.	2.5	57
40	High-end arteriolar resistance limits uterine artery blood flow and restricts fetal growth in preeclampsia and gestational hypertension at high altitude. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R1221-R1229.	1.8	55
41	Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders. Journal of Molecular Medicine, 2017, 95, 665-670.	3.9	52
42	Pregnancy-stimulated growth of vascular smooth muscle cells: Importance of protein kinase C-dependent synergy between estrogen and platelet-derived growth factor. Journal of Cellular Physiology, 1996, 166, 22-32.	4.1	49
43	An Argonaute 2 switch regulates circulating miR-210 to coordinate hypoxic adaptation across cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2528-2542.	4.1	48
44	Evidence that parentâ€ofâ€origin affects birthâ€weight reductions at high altitude. American Journal of Human Biology, 2008, 20, 592-597.	1.6	47
45	Chronic hypoxia opposes pregnancy-induced increase in uterine artery vasodilator response to flow. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H820-H829.	3.2	44
46	Ventilation and hypoxic ventilatory responsiveness in Chinese-Tibetan residents at 3,658 m. Journal of Applied Physiology, 1997, 83, 2098-2104.	2.5	43
47	Comparative Aspects of High-Altitude Adaptation in Human Populations. Advances in Experimental Medicine and Biology, 2002, 475, 45-62.	1.6	42
48	Determinants of blood oxygenation during pregnancy in Andean and European residents of high altitude. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1303-R1312.	1.8	41
49	Sleep-disordered breathing and oxidative stress in preclinical chronic mountain sickness (excessive) Tj ETQq1 1	0.784314 1.6	rgBT/Overloc
50	Does chronic mountain sickness (CMS) have perinatal origins?. Respiratory Physiology and Neurobiology, 2007, 158, 180-189.	1.6	39
51	Women at altitude: changes in carbohydrate metabolism at 4,300-m elevation and across the menstrual cycle. Journal of Applied Physiology, 1998, 85, 1966-1973.	2.5	38
52	Superior exercise performance in lifelong Tibetan residents of 4,400 m compared with Tibetan residents of 3,658 m. , 1998, 105, 21-31.		37
53	Analysis of the Myoglobin Gene in Tibetans Living at High Altitude. High Altitude Medicine and Biology, 2002, 3, 39-47.	0.9	36
54	Medical Recommendations for Women Going to Altitude. High Altitude Medicine and Biology, 2005, 6, 22-31.	0.9	35

#	Article	IF	CITATIONS
55	Human physiological adaptation to pregnancy: Inter- and intraspecific perspectives. American Journal of Human Biology, 2003, 15, 330-341.	1.6	34
56	Travel to High Altitude during Pregnancy: Frequently Asked Questions and Recommendations for Clinicians. High Altitude Medicine and Biology, 2012, 13, 73-81.	0.9	33
57	High Altitude Residence During Pregnancy Alters Cytokine and Catecholamine Levels. American Journal of Reproductive Immunology, 2002, 48, 344-354.	1.2	32
58	Role of the AT2 receptor in modulating the angiotensin II contractile response of the uterine artery at mid-gestation. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2011, 12, 176-183.	1.7	32
59	Pregnancy Stimulation of DNA Synthesis and Uterine Blood Flow in the Guinea Pig. Pediatric Research, 1997, 41, 708-715.	2.3	32
60	Lowland origin women raised at high altitude are not protected against lower uteroplacental O ₂ delivery during pregnancy or reduced birth weight. American Journal of Human Biology, 2011, 23, 509-516.	1.6	31
61	Effects of pregnancy and chronic hypoxia on contractile responsiveness to α ₁ -adrenergic stimulation. Journal of Applied Physiology, 1998, 85, 2322-2329.	2.5	30
62	Perinatal hypoxia increases susceptibility to high-altitude polycythemia and attendant pulmonary vascular dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H565-H573.	3.2	28
63	High Altitude Continues to Reduce Birth Weights in Colorado. Maternal and Child Health Journal, 2019, 23, 1573-1580.	1.5	26
64	High Altitude Reduces NO-Dependent Myometrial Artery Vasodilator Response During Pregnancy. Hypertension, 2019, 73, 1319-1326.	2.7	26
65	Effect of K ATP + channel inhibition on total and regional vascular resistance in guinea pig pregnancy. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H680-H688.	3.2	24
66	Higher Estrogen Levels During Pregnancy in Andean Than European Residents of High Altitude Suggest Differences in Aromatase Activity. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 2908-2916.	3.6	23
67	Neonatal Oxygenation, Pulmonary Hypertension, and Evolutionary Adaptation to High Altitude (2013) Tj ETQq1 3	l 0.78431 1.7	4 rgBT /Over
68	Pharmacological activation of peroxisome proliferatorâ€activated receptor γ (PPARâ€Ĵ³) protects against hypoxiaâ€associated fetal growth restriction. FASEB Journal, 2019, 33, 8999-9007.	0.5	23
69	Do Anti-angiogenic or Angiogenic Factors Contribute to the Protection of Birth Weight at High Altitude Afforded by Andean Ancestry?. Reproductive Sciences, 2010, 17, 861-870.	2.5	21
70	Potential role for elevated maternal enzymatic antioxidant status in Andean protection against altitude-associated SGA. Journal of Maternal-Fetal and Neonatal Medicine, 2012, 25, 1233-1240.	1.5	21
71	Unique DNA Methylation Patterns in Offspring of Hypertensive Pregnancy. Clinical and Translational Science, 2015, 8, 740-745.	3.1	20
72	HYPOXIA AND REPRODUCTIVE HEALTH: Reproductive challenges at high altitude: fertility, pregnancy and neonatal well-being. Reproduction, 2021, 161, F81-F90.	2.6	20

#	Article	IF	CITATIONS
73	Hypoxia causes reductions in birth weight by altering maternal glucose and lipid metabolism. Scientific Reports, 2018, 8, 13583.	3.3	19
74	Chronic hypoxia augments uterine artery distensibility and alters the circumferential wall stress-strain relationship during pregnancy. Journal of Applied Physiology, 2006, 100, 1842-1850.	2.5	18
75	Do Cytokines Contribute to the Andean-Associated Protection From Reduced Fetal Growth at High Altitude?. Reproductive Sciences, 2011, 18, 79-87.	2.5	17
76	Pregnancy increases myometrial artery myogenic tone via NOS- or COX-independent mechanisms. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R368-R375.	1.8	17
77	High-altitude residence alters blood-pressure course and increases hypertensive disorders of pregnancy. Journal of Maternal-Fetal and Neonatal Medicine, 2022, 35, 1264-1271.	1.5	17
78	An Evolutionary Model for Identifying Genetic Adaptation to High Altitude. , 2006, 588, 101-118.		16
79	Chronic Hypoxia Diminishes the Proliferative Response of Guinea Pig Uterine Artery Vascular Smooth Muscle Cells in Vitro. High Altitude Medicine and Biology, 2006, 7, 237-244.	0.9	14
80	Surnameâ€inferred andean ancestry is associated with child stature and limb lengths at high altitude in <scp>P</scp> eru, but not at sea level. American Journal of Human Biology, 2015, 27, 798-806.	1.6	14
81	Increased uterine artery blood flow in hypoxic murine pregnancy is not sufficient to prevent fetal growth restrictionâ€. Biology of Reproduction, 2020, 102, 660-670.	2.7	14
82	AMPâ€activated protein kinase activator AICAR attenuates hypoxiaâ€induced murine fetal growth restriction in part by improving uterine artery blood flow. Journal of Physiology, 2020, 598, 4093-4105.	2.9	14
83	Women at altitude: forearm hemodynamics during acclimatization to 4,300 m with α ₁ -adrenergic blockade. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2636-H2644.	3.2	12
84	Chronic hypoxia increases MCA contractile response to U-46619 by reducing NO production and/or activity. Journal of Applied Physiology, 2002, 92, 1859-1864.	2.5	12
85	Finding the Genes Underlying Adaptation to Hypoxia Using Genomic Scans for Genetic Adaptation and Admixture Mapping. Advances in Experimental Medicine and Biology, 2006, 588, 89-100.	1.6	12
86	Effect of high altitude on human placental amino acid transport. Journal of Applied Physiology, 2020, 128, 127-133.	2.5	12
87	Inhibition of peroxisome proliferatorâ€activated receptor γ: a potential link between chronic maternal hypoxia and impaired fetal growth. FASEB Journal, 2014, 28, 1268-1279.	0.5	11
88	AMPK activation in pregnant human myometrial arteries from high-altitude and intrauterine growth-restricted pregnancies. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H203-H212.	3.2	11
89	Erythropoietin and Soluble Erythropoietin Receptor: A Role for Maternal Vascular Adaptation to High-Altitude Pregnancy. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 242-250.	3.6	9
90	High altitude regulates the expression of AMPK pathways in human placenta. Placenta, 2021, 104, 267-276.	1.5	8

#	Article	IF	CITATIONS
91	Vascular Disorders of Pregnancy Increase Susceptibility to Neonatal Pulmonary Hypertension in High-Altitude Populations. Hypertension, 2022, 79, 1286-1296.	2.7	8
92	Role of cytokines in altitude-associated preeclampsia. Pregnancy Hypertension, 2012, 2, 65-70.	1.4	7
93	Critical barriers for preeclampsia diagnosis and treatment in low-resource settings: An example from Bolivia. Pregnancy Hypertension, 2019, 16, 139-144.	1.4	5
94	Hypoxia-induced inhibition of mTORC1 activity in the developing lung: a possible mechanism for the developmental programming of pulmonary hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H980-H990.	3.2	5
95	Jack Reeves and his science. Respiratory Physiology and Neurobiology, 2006, 151, 96-108.	1.6	4
96	Little Effect of Gestation at 3,100 m on Fetal Fat Accretion or the Fetal Circulation. American Journal of Human Biology, 2013, 25, 544-549.	1.6	4
97	Uteroplacental Ischemia Is Associated with Increased PAPP-A2. Reproductive Sciences, 2020, 27, 529-536.	2.5	4
98	Characterization of the Primary Human Trophoblast Cell Secretome Using Stable Isotope Labeling With Amino Acids in Cell Culture. Frontiers in Cell and Developmental Biology, 2021, 9, 704781.	3.7	4
99	Uteroplacental nutrient flux and evidence for metabolic reprogramming during sustained hypoxemia. Physiological Reports, 2021, 9, e15033.	1.7	4
100	Gestational Diabetes Prevalence at Moderate and High Altitude. High Altitude Medicine and Biology, 2018, 19, 367-372.	0.9	3
101	ACOG and local diagnostic criteria for hypertensive disorders of pregnancy (HDP) in La Paz-El Alto, Bolivia: A retrospective case-control study. The Lancet Regional Health Americas, 2022, 9, 100194.	2.6	3
102	Queen of the mountain: successful pregnancy while exercising up to 5,300 m. Journal of Applied Physiology, 2018, 125, 577-579.	2.5	2
103	Human adaptation to high altitude: Regional and life-cycle perspectives. , 0, .		2
104	Peroxisome proliferatorâ€activated receptor gamma blunts endothelinâ€1â€mediated contraction of the uterine artery in a murine model of highâ€altitude pregnancy. FASEB Journal, 2020, 34, 4283-4292.	0.5	2
105	How hypoxia slows fetal growth: insights from high altitude. Pediatric Research, 2021, , .	2.3	2
106	The Quest for Riches, or How Mining Silver in Bolivia Has Enriched Our Knowledge of the Mechanisms Underlying Reproductive Success. High Altitude Medicine and Biology, 2003, 4, 105-109.	0.9	1
107	Tibetan protection from intrauterine growth restriction (IUGR) and reproductive loss at high altitude. American Journal of Human Biology, 2001, 13, 635-644.	1.6	1
108	Introduction: strategies for reproductive success. American Journal of Human Biology, 2003, 15, 293-295.	1.6	0

LORNA G MOORE

#	Article	IF	CITATIONS
109	Recomendaciones médicas para mujeres que van a altitud. Documento de consenso de la comisión médica de la UIAA. Apunts Medicine De L'Esport, 2006, 41, 116-124.	0.5	Ο
110	668: High altitude increases mid-gestation maternal PAPP-A2. American Journal of Obstetrics and Gynecology, 2015, 212, S328-S329.	1.3	0
111	The role of antioxidant & oxidative status in the protection against altitudeâ€associated reductions in uterine artery (UA) blood flow & fetal growth afforded by Andean ancestry. FASEB Journal, 2008, 22, 1173.18.	0.5	0
112	Tibetan Gain-of-Function Variant of Prolyl Hydroxylase 2 (EGLN1) and Selected SNPs of HIF-2-Alpha (EPAS1) Are Associated with Lower Hemoglobin Values in Tibetans. Blood, 2015, 126, 3332-3332.	1.4	0