
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3046989/publications.pdf

Version: 2024-02-01

Ιορολή Νλυλόβο

#	Article	IF	CITATIONS
1	On the neurocognitive origins of human tool use : A critical review of neuroimaging data. Neuroscience and Biobehavioral Reviews, 2016, 64, 421-437.	6.1	116
2	Driver behaviour at rail level crossings: Responses to flashing lights, traffic signals and stop signs in simulated rural driving. Applied Ergonomics, 2011, 42, 548-554.	3.1	84
3	Lateral control assistance in car driving: classification, review and future prospects. IET Intelligent Transport Systems, 2011, 5, 207.	3.0	73
4	Acceptance and acceptability criteria: a literature review. Cognition, Technology and Work, 2018, 20, 165-177.	3.0	70
5	Lateral Control Assistance for Car Drivers: A Comparison of Motor Priming and Warning Systems. Human Factors, 2007, 49, 950-960.	3.5	58
6	Where We Look When We Drive with or without Active Steering Wheel Control. PLoS ONE, 2012, 7, e43858.	2.5	55
7	Obstacle avoidance under automated steering: Impact on driving and gaze behaviours. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 43, 315-324.	3.7	52
8	Objective and subjective evaluation of motor priming and warning systems applied to lateral control assistance. Accident Analysis and Prevention, 2010, 42, 904-912.	5.7	48
9	A state of science on highly automated driving. Theoretical Issues in Ergonomics Science, 2019, 20, 366-396.	1.8	47
10	Automotive HMI design and participatory user involvement: review and perspectives. Ergonomics, 2017, 60, 541-552.	2.1	45
11	Neuroergonomics of car driving: A critical meta-analysis of neuroimaging data on the human brain behind the wheel. Neuroscience and Biobehavioral Reviews, 2018, 95, 464-479.	6.1	42
12	To Watch is to Work: a Review of NeuroImaging Data on Tool Use Observation Network. Neuropsychology Review, 2019, 29, 484-497.	4.9	39
13	Effectiveness of traffic light vs. boom barrier controls at road–rail level crossings: A simulator study. Accident Analysis and Prevention, 2012, 45, 187-194.	5.7	38
14	Physical intelligence does matter to cumulative technological culture Journal of Experimental Psychology: General, 2016, 145, 941-948.	2.1	36
15	Influence of lane departure warnings onset and reliability on car drivers' behaviors. Applied Ergonomics, 2017, 59, 123-131.	3.1	31
16	Technition: When Tools Come Out of the Closet. Perspectives on Psychological Science, 2020, 15, 880-897.	9.0	30
17	Human–machine interaction theories and lane departure warnings. Theoretical Issues in Ergonomics Science, 2017, 18, 519-547.	1.8	28
18	Digital, analogue, or redundant speedometers for truck driving: Impact on visual distraction, efficiency and usability. Applied Ergonomics, 2017, 65, 12-22.	3.1	24

#	Article	IF	CITATIONS
19	Mechanisms underlying cognitive conspicuity in the detection of cyclists by car drivers. Accident Analysis and Prevention, 2017, 104, 88-95.	5.7	23
20	From manual to automated driving: how does trust evolve?. Theoretical Issues in Ergonomics Science, 2021, 22, 528-554.	1.8	23
21	OpenMATB: A Multi-Attribute Task Battery promoting task customization, software extensibility and experiment replicability. Behavior Research Methods, 2020, 52, 1980-1990.	4.0	23
22	Highly Automated Driving Impact on Drivers' Gaze Behaviors during a Car-Following Task. International Journal of Human-Computer Interaction, 2019, 35, 1008-1017.	4.8	22
23	The impact of false warnings on partial and full lane departure warnings effectiveness and acceptance in car driving. Ergonomics, 2016, 59, 1553-1564.	2.1	21
24	Influence of human-machine interactions and task demand on automation selection and use. Ergonomics, 2018, 61, 1601-1612.	2.1	21
25	Does the Tempo of Music Impact Human Behavior Behind the Wheel?. Human Factors, 2018, 60, 556-574.	3.5	19
26	How Our Cognition Shapes and Is Shaped by Technology: A Common Framework for Understanding Human Tool-Use Interactions in the Past, Present, and Future. Frontiers in Psychology, 2018, 9, 293.	2.1	17
27	To Do It or to Let an Automatic Tool Do It?. Experimental Psychology, 2013, 60, 453-468.	0.7	17
28	The castaway island: Distinct roles of theory of mind and technical reasoning in cumulative technological culture Journal of Experimental Psychology: General, 2020, 149, 58-66.	2.1	17
29	The cortical thickness of the area PF of the left inferior parietal cortex mediates technical-reasoning skills. Scientific Reports, 2022, 12, .	3.3	16
30	Parking and manoeuvring among older drivers: A survey investigating special needs and difficulties. Transportation Research Part F: Traffic Psychology and Behaviour, 2014, 26, 238-245.	3.7	15
31	When Do We Use Automatic Tools Rather Than Doing a Task Manually? Influence of Automatic Tool Speed. American Journal of Psychology, 2015, 128, 77-88.	0.3	15
32	Technical reasoning is important for cumulative technological culture. Nature Human Behaviour, 2021, 5, 1643-1651.	12.0	14
33	How the initial level of trust in automated driving impacts drivers' behaviour and early trust construction. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 86, 281-295.	3.7	14
34	Involvement of the Left Supramarginal Gyrus in Manipulation Judgment Tasks: Contributions to Theories of Tool Use. Journal of the International Neuropsychological Society, 2017, 23, 685-691.	1.8	13
35	Are You Sure You're Faster When Using a Cognitive Tool?. American Journal of Psychology, 2017, 130, 493.	0.3	13
36	Impact of Pilot's Expertise on Selection, Use, Trust, and Acceptance of Automation. IEEE Transactions on Human-Machine Systems, 2021, 51, 432-441.	3.5	11

#	Article	IF	CITATIONS
37	Are highly automated vehicles as useful as dishwashers?. Cogent Psychology, 2019, 6, .	1.3	10
38	Impact of mindâ€wandering on visual information processing while driving: An electrophysiological study. Applied Cognitive Psychology, 2021, 35, 508-516.	1.6	10
39	Dynamic scan paths investigations under manual and highly automated driving. Scientific Reports, 2021, 11, 3776.	3.3	10
40	On the nature of eye-hand coordination in natural steering behavior. PLoS ONE, 2020, 15, e0242818.	2.5	10
41	Detecting driver stress and hazard anticipation using realâ€ŧime cardiac measurement: A simulator study. Brain and Behavior, 2022, 12, e2424.	2.2	10
42	Perceived versus actual head-on-trunk orientation during arm movement control. Experimental Brain Research, 2006, 172, 221-229.	1.5	9
43	User perceptions and evaluations of short vibrotactile feedback. Journal of Cognitive Psychology, 2013, 25, 299-308.	0.9	9
44	Effects of shrinkage of the visual field through ageing on parking performance: a parametric manipulation of salience and relevance of contextual components. Ergonomics, 2015, 58, 698-711.	2.1	9
45	Driving Under the Influence: How Music Listening Affects Driving Behaviors. Journal of Visualized Experiments, 2019, , .	0.3	9
46	Usability and acceptance of truck dashboards designed by drivers: Two participatory design approaches compared to a user-centered design. International Journal of Industrial Ergonomics, 2021, 81, 103073.	2.6	9
47	Tools don't—and won't—make the man: A cognitive look at the future Journal of Experimental Psychology: General, 2018, 147, 782-788.	2.1	9
48	Did Tools Create Humans?. Theoretical Issues in Ergonomics Science, 2023, 24, 206-232.	1.8	9
49	Imitation and matching of meaningless gestures: distinct involvement from motor and visual imagery. Psychological Research, 2017, 81, 525-537.	1.7	8
50	Does False and Missed Lane Departure Warnings Impact Driving Performances Differently?. International Journal of Human-Computer Interaction, 2019, 35, 1292-1302.	4.8	8
51	Effect of Imperfect Information and Action Automation on Attentional Allocation. International Journal of Human-Computer Interaction, 2021, 37, 1063-1073.	4.8	7
52	Do distinct mind wandering differently disrupt drivers? Interpretation of physiological and behavioral pattern with a data triangulation method. Consciousness and Cognition, 2018, 62, 69-81.	1.5	6
53	Gauges design for a digital instrument cluster: Efficiency, visual capture, and satisfaction assessment for truck driving. International Journal of Industrial Ergonomics, 2019, 72, 290-297.	2.6	6
54	Calibration of Trust in Automated Driving: A Matter of Initial Level of Trust and Automated Driving Style?. Human Factors, 2023, 65, 1613-1629.	3.5	6

#	Article	IF	CITATIONS
55	Music selection using a touch screen interface: effect of auditory and visual feedback on driving and usability. International Journal of Vehicle Design, 2011, 57, 391.	0.3	5
56	Automation Type and Reliability Impact on Visual Automation Monitoring and Human Performance. International Journal of Human-Computer Interaction, 0, , 1-14.	4.8	5
57	Disembodying (tool-use) action understanding. Neuroscience and Biobehavioral Reviews, 2020, 114, 229-231.	6.1	5
58	Parking Manoeuvres Differ among Drivers with Narrower and Wider Field of View in the Presence of a Spatial Reference. Applied Cognitive Psychology, 2015, 29, 309-313.	1.6	4
59	Which cognitive tools do we prefer to use, and is that preference rational?. Cognition, 2019, 186, 108-114.	2.2	4
60	Development of the Smart Tools Proneness Questionnaire (STP-Q): an instrument to assess the individual propensity to use smart tools. Ergonomics, 2022, 65, 1639-1658.	2.1	4
61	The more intelligent people are, the more they use tools. Psychologie Francaise, 2017, 62, 85-91.	0.4	3
62	Is Mindfulness Helping the Brain to Drive? Insights From Behavioral Data and Future Directions for Research. , 2019, , 93-97.		3
63	Gaze behaviours engaged while taking over automated driving: a systematic literature review. Theoretical Issues in Ergonomics Science, 2023, 24, 54-87.	1.8	3
64	The Toolman effect: Preexisting non-tool-use experience improves subsequent tool-use performance. Acta Psychologica, 2021, 220, 103389.	1.5	2
65	The Pedagogue, the Engineer, and the Friend. Human Nature, 2020, 31, 462-482.	1.6	2
66	Commentary: Effects of dividing attention on memory for declarative and procedural aspects of tool use. Frontiers in Psychology, 2016, 7, 1488.	2.1	1
67	Haptic modality takes its time: Dynamic of activations of sensory modalities in perceptual and memory processes. International Journal of Psychology, 2018, 53, 237-242.	2.8	1
68	Tool acceptance and acceptability: insights from a real tool use activity. Cognitive Processing, 2021, 22, 627-639.	1.4	1
69	The Reactivation of Motion Influences Size Categorization in a Visuo-Haptic Illusion. American Journal of Psychology, 2016, 129, 235.	0.3	0
70	26-3: Invited Paper : Increasing Automotive Safety and Comfort Through Haptics, Auditory and Visual Feedback. Digest of Technical Papers SID International Symposium, 2017, 48, 370-373.	0.3	0
71	Detection of Mind-Wandering in Driving. , 2018, , 305-306.		0
72	Nos performances de conduite sont-elles sous l'influence du tempo de la musique que nous écoutons� Une étude sur simulateur. Recherche - Transports - Securite, 2016, 2015, 75-85.	0.1	0

#	Article	IF	CITATIONS
73	Efficacité des alertes signalant un risque de collision par l'arrière chez le conducteur distrait. Recherche - Transports - Securite, 2016, 2015, 87-93.	0.1	Ο
74	Automation and Complacency: Insights from a Planning Task in the Transportation Domain. Communications in Computer and Information Science, 2018, , 437-442.	0.5	0
75	The effects of information and action automation on the complacency phenomenon. , 2019, , .		Ο
76	Return to Manual Control After Monitoring Automated Systems: Effects of Different Levels of Reliability. Advances in Intelligent Systems and Computing, 2020, , 317-323.	0.6	0
77	Impact of Intrinsic Cognitive Skills and Metacognitive Beliefs on Tool Use Performance. American Journal of Psychology, 2022, 135, 59-68.	0.3	0