
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3046614/publications.pdf Version: 2024-02-01



DENIZ KIDIK

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A combined cell and gene therapy approach for homotopic reconstruction of midbrain dopamine pathways using human pluripotent stem cells. Cell Stem Cell, 2022, 29, 434-448.e5.      | 11.1 | 23        |
| 2  | Viral-based rodent and nonhuman primate models of multiple system atrophy: Fidelity to the human<br>disease. Neurobiology of Disease, 2021, 148, 105184.                            | 4.4  | 14        |
| 3  | Effects of mutant huntingtin inactivation on Huntington diseaseâ€related behaviours in the BACHD mouse model. Neuropathology and Applied Neurobiology, 2021, 47, 564-578.           | 3.2  | 1         |
| 4  | Positive symptom phenotypes appear progressively in "EDiPSâ€ <del>,</del> a new animal model of the schizophrenia<br>prodrome. Scientific Reports, 2021, 11, 4294.                  | 3.3  | 6         |
| 5  | Comparison of Locus Coeruleus Pathology with Nigral and Forebrain Pathology in Parkinson's<br>Disease. Movement Disorders, 2021, 36, 2085-2093.                                     | 3.9  | 23        |
| 6  | DNAJB6 suppresses alpha-synuclein induced pathology in an animal model of Parkinson's disease.<br>Neurobiology of Disease, 2021, 158, 105477.                                       | 4.4  | 14        |
| 7  | Two C-terminal sequence variations determine differential neurotoxicity between human and mouse<br>α-synuclein. Molecular Neurodegeneration, 2020, 15, 49.                          | 10.8 | 6         |
| 8  | Viral Delivery of GDNF Promotes Functional Integration of Human Stem Cell Grafts in Parkinson's<br>Disease. Cell Stem Cell, 2020, 26, 511-526.e5.                                   | 11.1 | 56        |
| 9  | How is alphaâ€synuclein cleared from the cell?. Journal of Neurochemistry, 2019, 150, 577-590.                                                                                      | 3.9  | 113       |
| 10 | Enhanced Dopamine in Prodromal Schizophrenia (EDiPS): a new animal model of relevance to schizophrenia. NPJ Schizophrenia, 2019, 5, 6.                                              | 3.6  | 15        |
| 11 | Organotypic slice culture model demonstrates inter-neuronal spreading of alpha-synuclein aggregates. Acta Neuropathologica Communications, 2019, 7, 213.                            | 5.2  | 45        |
| 12 | A44â€Analysis of the deletion of mutant huntingtin from A2A-receptor expressing neurons. , 2018, , .                                                                                |      | 0         |
| 13 | Quantification of Total and Mutant Huntingtin Protein Levels in Biospecimens Using a Novel alphaLISA<br>Assay. ENeuro, 2018, 5, ENEURO.0234-18.2018.                                | 1.9  | 10        |
| 14 | Longitudinal monoaminergic PET imaging of chronic proteasome inhibition in minipigs. Scientific<br>Reports, 2018, 8, 15715.                                                         | 3.3  | 12        |
| 15 | In vivo quantification of glial activation in minipigs overexpressing human αâ€synuclein. Synapse, 2018, 72,<br>e22060.                                                             | 1.2  | 15        |
| 16 | Toxic effects of human and rodent variants of alphaâ€synuclein <i>inÂvivo</i> . European Journal of<br>Neuroscience, 2017, 45, 536-547.                                             | 2.6  | 21        |
| 17 | Novel oligodendroglial alpha synuclein viral vector models of multiple system atrophy: studies in rodents and nonhuman primates. Acta Neuropathologica Communications, 2017, 5, 47. | 5.2  | 33        |
| 18 | Gene therapy for Parkinson's disease: Disease modification by GDNF family of ligands. Neurobiology of<br>Disease, 2017, 97, 179-188.                                                | 4.4  | 40        |

| #  | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Interaction between subclinical doses of the Parkinson's disease associated gene, α -synuclein , and the pesticide, rotenone, precipitates motor dysfunction and nigrostriatal neurodegeneration in rats.<br>Behavioural Brain Research, 2017, 316, 160-168.               | 2.2  | 19        |
| 20 | Preserved Function of Afferent Parvalbumin-Positive Perisomatic Inhibitory Synapses of Dentate<br>Granule Cells in Rapidly Kindled Mice. Frontiers in Cellular Neuroscience, 2017, 11, 433.                                                                                | 3.7  | 8         |
| 21 | Assessment of brain metabolite correlates of adenoâ€associated virusâ€mediated overâ€expression of<br>human alphaâ€synuclein in cortical neurons by <i>inÂvivo</i> <sup>1</sup> Hâ€ <scp>MR</scp> spectroscopy<br>at 9.4 T. Journal of Neurochemistry, 2016, 137, 806-819. | 3.9  | 3         |
| 22 | A novel multiplex assay for simultaneous quantification of total and S129 phosphorylated human alpha-synuclein. Molecular Neurodegeneration, 2016, 11, 61.                                                                                                                 | 10.8 | 39        |
| 23 | How can <scp>rAAV</scp> â€Î±â€synuclein and the fibril αâ€synuclein models advance our understanding of<br>Parkinson's disease?. Journal of Neurochemistry, 2016, 139, 131-155.                                                                                            | 3.9  | 84        |
| 24 | Overexpression of α-synuclein in oligodendrocytes does not increase susceptibility to focal striatal excitotoxicity. BMC Neuroscience, 2015, 16, 86.                                                                                                                       | 1.9  | 5         |
| 25 | Selective loss of oxytocin and vasopressin in the hypothalamus in early <scp>H</scp> untington disease: a case study. Neuropathology and Applied Neurobiology, 2015, 41, 843-848.                                                                                          | 3.2  | 31        |
| 26 | Volumetric Analysis of the Hypothalamus in Huntington Disease Using 3T MRI: The IMAGE-HD Study.<br>PLoS ONE, 2015, 10, e0117593.                                                                                                                                           | 2.5  | 30        |
| 27 | Controlled Striatal DOPA Production From a Gene Delivery System in a Rodent Model of Parkinson's<br>Disease. Molecular Therapy, 2015, 23, 896-906.                                                                                                                         | 8.2  | 18        |
| 28 | Ser129 phosphorylation of endogenous α-synuclein induced by overexpression of polo-like kinases 2<br>and 3 in nigral dopamine neurons is not detrimental to their survival and function. Neurobiology of<br>Disease, 2015, 78, 100-114.                                    | 4.4  | 24        |
| 29 | Differential Dopamine Receptor Occupancy Underlies L-DOPA-Induced Dyskinesia in a Rat Model of<br>Parkinson's Disease. PLoS ONE, 2014, 9, e90759.                                                                                                                          | 2.5  | 16        |
| 30 | Global Optogenetic Activation of Inhibitory Interneurons during Epileptiform Activity. Journal of Neuroscience, 2014, 34, 3364-3377.                                                                                                                                       | 3.6  | 103       |
| 31 | Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson's<br>disease. Brain, 2014, 137, 2493-2508.                                                                                                                                | 7.6  | 232       |
| 32 | Optogenetic inhibition of chemically induced hypersynchronized bursting in mice. Neurobiology of<br>Disease, 2014, 65, 133-141.                                                                                                                                            | 4.4  | 44        |
| 33 | Twisting mice move the dystonia field forward. Journal of Clinical Investigation, 2014, 124, 2848-2850.                                                                                                                                                                    | 8.2  | 1         |
| 34 | Animal models of Parkinson's disease: Limits and relevance to neuroprotection studies. Movement<br>Disorders, 2013, 28, 61-70.                                                                                                                                             | 3.9  | 156       |
| 35 | Ser129D mutant alpha-synuclein induces earlier motor dysfunction while S129A results in distinctive pathology in a rat model of Parkinson's disease. Neurobiology of Disease, 2013, 56, 47-58.                                                                             | 4.4  | 42        |
| 36 | Variability in neuronal expression of dopamine receptors and transporters in the substantia nigra.<br>Movement Disorders, 2013, 28, 1351-1359.                                                                                                                             | 3.9  | 20        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration.<br>Brain, 2013, 136, 2130-2146.                                                                                                        | 7.6 | 175       |
| 38 | Trophic factors differentiate dopamine neurons vulnerable to Parkinson's disease. Neurobiology of Aging, 2013, 34, 873-886.                                                                                                           | 3.1 | 44        |
| 39 | The behavioural and neuropathological impact of intranigral AAV-α-synuclein is exacerbated by systemic infusion of the Parkinson's disease-associated pesticide, rotenone, in rats. Behavioural Brain Research, 2013, 243, 6-15.      | 2.2 | 26        |
| 40 | Development of <scp>NMR</scp> spectroscopic methods for dynamic detection of acetylcholine<br>synthesis by choline acetyltransferase in hippocampal tissue. Journal of Neurochemistry, 2013, 124,<br>336-346.                         | 3.9 | 8         |
| 41 | Hypothalamic expression of mutant huntingtin contributes to the development of depressive-like<br>behavior in the BAC transgenic mouse model of Huntington's disease. Human Molecular Genetics, 2013,<br>22, 3485-3497.               | 2.9 | 67        |
| 42 | LAMP2A as a therapeutic target in Parkinson disease. Autophagy, 2013, 9, 2166-2168.                                                                                                                                                   | 9.1 | 41        |
| 43 | Continuous DOPA synthesis from a single AAV: dosing and efficacy in models of Parkinson's disease.<br>Scientific Reports, 2013, 3, 2157.                                                                                              | 3.3 | 19        |
| 44 | Characterization of Cognitive Deficits in Rats Overexpressing Human Alpha-Synuclein in the Ventral<br>Tegmental Area and Medial Septum Using Recombinant Adeno-Associated Viral Vectors. PLoS ONE, 2013,<br>8, e64844.                | 2.5 | 21        |
| 45 | Design of a Single AAV Vector for Coexpression of TH and GCH1 to Establish Continuous DOPA<br>Synthesis in a Rat Model of Parkinson's Disease. Molecular Therapy, 2012, 20, 1315-1326.                                                | 8.2 | 27        |
| 46 | α-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal<br>death and inflammation in early-stage Parkinson's disease. Human Molecular Genetics, 2012, 21,<br>3173-3192.                       | 2.9 | 228       |
| 47 | Key factors determining the efficacy of gene therapy for continuous DOPA delivery in the<br>Parkinsonian brain. Neurobiology of Disease, 2012, 48, 222-227.                                                                           | 4.4 | 8         |
| 48 | Introduction. Neurobiology of Disease, 2012, 48, 151-152.                                                                                                                                                                             | 4.4 | 3         |
| 49 | Selective neuroprotective effects of the S18Y polymorphic variant of UCH-L1 in the dopaminergic system. Human Molecular Genetics, 2012, 21, 874-889.                                                                                  | 2.9 | 34        |
| 50 | GIRK2 expression in dopamine neurons of the substantia nigra and ventral tegmental area. Journal of<br>Comparative Neurology, 2012, 520, 2591-2607.                                                                                   | 1.6 | 76        |
| 51 | Dysregulated dopamine storage increases the vulnerability to α-synuclein in nigral neurons.<br>Neurobiology of Disease, 2012, 47, 367-377.                                                                                            | 4.4 | 53        |
| 52 | Altered profile of basket cell afferent synapses in hyperâ€excitable dentate gyrus revealed by<br>optogenetic and twoâ€pathway stimulations. European Journal of Neuroscience, 2012, 36, 1971-1983.                                   | 2.6 | 15        |
| 53 | Characterization of a rat model of Huntington's disease based on targeted expression of mutant<br><i>huntingtin</i> in the forebrain using adenoâ€associated viral vectors. European Journal of<br>Neuroscience, 2012, 36, 2789-2800. | 2.6 | 11        |
| 54 | Development of advanced therapies based on viral vector-mediated overexpression of therapeutic<br>molecules and knockdown of disease-related genes for Parkinson's disease. Therapeutic Delivery, 2011,<br>2, 37-50.                  | 2.2 | 4         |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Mutant Huntingtin Causes Metabolic Imbalance by Disruption of Hypothalamic Neurocircuits. Cell<br>Metabolism, 2011, 13, 428-439.                                                                                  | 16.2 | 90        |
| 56 | GDNF fails to exert neuroprotection in a rat Â-synuclein model of Parkinson's disease. Brain, 2011, 134, 2302-2311.                                                                                               | 7.6  | 157       |
| 57 | Changes in key hypothalamic neuropeptide populations in Huntington disease revealed by neuropathological analyses. Acta Neuropathologica, 2010, 120, 777-788.                                                     | 7.7  | 93        |
| 58 | Early changes in the hypothalamic region in prodromal Huntington disease revealed by MRI analysis.<br>Neurobiology of Disease, 2010, 40, 531-543.                                                                 | 4.4  | 74        |
| 59 | A General Chemical Method to Regulate Protein Stability in the Mammalian Central Nervous System.<br>Chemistry and Biology, 2010, 17, 981-988.                                                                     | 6.0  | 313       |
| 60 | Coâ€expression of Câ€terminal truncated alphaâ€synuclein enhances fullâ€length alphaâ€synucleinâ€induced<br>pathology. European Journal of Neuroscience, 2010, 32, 409-422.                                       | 2.6  | 90        |
| 61 | Microglia Acquire Distinct Activation Profiles Depending on the Degree of α-Synuclein Neuropathology<br>in a rAAV Based Model of Parkinson's Disease. PLoS ONE, 2010, 5, e8784.                                   | 2.5  | 207       |
| 62 | Presynaptic dopaminergic compartment determines the susceptibility to L-DOPA–induced dyskinesia in rats. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13159-13164. | 7.1  | 48        |
| 63 | Optimized adeno-associated viral vector-mediated striatal DOPA delivery restores sensorimotor<br>function and prevents dyskinesias in a model of advanced Parkinson's disease. Brain, 2010, 133, 496-511.         | 7.6  | 42        |
| 64 | The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant<br>for recovery of motor function in a rat model of Parkinson's disease. Brain, 2010, 133, 482-495.               | 7.6  | 125       |
| 65 | Differential Transduction Following Basal Ganglia Administration of Distinct Pseudotyped AAV Capsid<br>Serotypes in Nonhuman Primates. Molecular Therapy, 2010, 18, 579-587.                                      | 8.2  | 82        |
| 66 | Viral vector-mediated overexpression of α-synuclein as a progressive model of Parkinson's disease.<br>Progress in Brain Research, 2010, 184, 89-111.                                                              | 1.4  | 99        |
| 67 | Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain. Experimental Neurology, 2010, 222, 70-85.                  | 4.1  | 23        |
| 68 | Feasibility of in vivo15N MRS detection of hyperpolarized 15N labeled choline in rats. Physical<br>Chemistry Chemical Physics, 2010, 12, 5818.                                                                    | 2.8  | 96        |
| 69 | Positron Emission Tomography Imaging Demonstrates Correlation between Behavioral Recovery and<br>Correction of Dopamine Neurotransmission after Gene Therapy. Journal of Neuroscience, 2009, 29,<br>1544-1553.    | 3.6  | 32        |
| 70 | Huntington's Disease – New Perspectives Based on Neuroendocrine Changes in Rodent Models.<br>Neurodegenerative Diseases, 2009, 6, 154-164.                                                                        | 1.4  | 25        |
| 71 | Dose Optimization for Long-term rAAV-mediated RNA Interference in the Nigrostriatal Projection Neurons. Molecular Therapy, 2009, 17, 1574-1584.                                                                   | 8.2  | 67        |
| 72 | Gene Therapy for Dopamine Replacement in ParkinsonÂ's Disease. Science Translational Medicine, 2009, 1,<br>2ps2.                                                                                                  | 12.4 | 29        |

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Reconstruction of the nigrostriatal dopamine pathway in the adult mouse brain. European Journal of<br>Neuroscience, 2009, 30, 625-638.                                                                     | 2.6  | 116       |
| 74 | Optimization of continuous <i>in vivo</i> DOPA production and studies on ectopic DA synthesis using rAAV5 vectors in Parkinsonian rats. Journal of Neurochemistry, 2009, 111, 355-367.                     | 3.9  | 14        |
| 75 | Proton NMR of <sup>15</sup> N-Choline Metabolites Enhanced by Dynamic Nuclear Polarization.<br>Journal of the American Chemical Society, 2009, 131, 16014-16015.                                           | 13.7 | 107       |
| 76 | Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nature Cell Biology, 2008, 10, 584-592.                                              | 10.3 | 143       |
| 77 | In vivo gene delivery to proliferating cells in the striatum generated in response to a<br>6-hydroxydopamine lesion of the nigro-striatal dopamine pathway. Neurobiology of Disease, 2008, 30,<br>343-352. | 4.4  | 5         |
| 78 | Serotonin–dopamine interaction in the induction and maintenance of L-DOPA-induced dyskinesias.<br>Progress in Brain Research, 2008, 172, 465-478.                                                          | 1.4  | 110       |
| 79 | Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of L-DOPA-induced dyskinesia. Brain, 2008, 131, 3380-3394.                                                                                  | 7.6  | 223       |
| 80 | Impact of grafted serotonin and dopamine neurons on development of L-DOPA-induced dyskinesias in parkinsonian rats is determined by the extent of dopamine neuron degeneration. Brain, 2008, 132, 319-335. | 7.6  | 90        |
| 81 | Functional Convergence of Dopaminergic and Cholinergic Input Is Critical for<br>Hippocampus-Dependent Working Memory. Journal of Neuroscience, 2008, 28, 7797-7807.                                        | 3.6  | 62        |
| 82 | Future Cell- and Gene-Based Therapies for Parkinson's Disease. , 2008, , 145-156.                                                                                                                          |      | 0         |
| 83 | Applications of Lentiviral Vectors for Biology and Gene Therapy of Neurological Disorders. Current<br>Gene Therapy, 2008, 8, 461-473.                                                                      | 2.0  | 139       |
| 84 | Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain.<br>Brain, 2007, 130, 799-815.                                                                              | 7.6  | 186       |
| 85 | Murine models of acute neuronopathic Gaucher disease. Proceedings of the National Academy of<br>Sciences of the United States of America, 2007, 104, 17483-17488.                                          | 7.1  | 160       |
| 86 | The Functional Impact of the Intrastriatal Dopamine Neuron Grafts in Parkinsonian Rats Is Reduced with Advancing Disease. Journal of Neuroscience, 2007, 27, 5849-5856.                                    | 3.6  | 33        |
| 87 | Serotonin Neuron Transplants Exacerbate I-DOPA- Induced Dyskinesias in a Rat Model of Parkinson's Disease. Journal of Neuroscience, 2007, 27, 8011-8022.                                                   | 3.6  | 180       |
| 88 | Brain area, age and viral vector-specific glial cell-line-derived neurotrophic factor expression and transport in rat. NeuroReport, 2007, 18, 845-850.                                                     | 1.2  | 12        |
| 89 | Restoration of the Striatal Dopamine Synthesis for Parkinsons Disease:Viral Vector-Mediated Enzyme<br>Replacement Strategy. Current Gene Therapy, 2007, 7, 109-120.                                        | 2.0  | 45        |
| 90 | Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats.<br>Brain, 2007, 130, 1819-1833.                                                                      | 7.6  | 569       |

| #   | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Seizure Suppression by GDNF Gene Therapy in Animal Models of Epilepsy. Molecular Therapy, 2007, 15, 1106-1113.                                                                                                                                                                   | 8.2  | 87        |
| 92  | Targetedin uterodelivery of a retroviral vector for gene transfer in the rodent brain. European<br>Journal of Neuroscience, 2006, 24, 1897-1906.                                                                                                                                 | 2.6  | 10        |
| 93  | An investigation of the problem of two-layered immunohistochemical staining in paraformaldehyde fixed sections. Journal of Neuroscience Methods, 2006, 158, 64-74.                                                                                                               | 2.5  | 20        |
| 94  | Graft placement and uneven pattern of reinnervation in the striatum is important for development of graft-induced dyskinesia. Neurobiology of Disease, 2006, 21, 657-668.                                                                                                        | 4.4  | 105       |
| 95  | Ventral tegmental area dopamine neurons are resistant to human mutant alpha-synuclein overexpression. Neurobiology of Disease, 2006, 23, 522-532.                                                                                                                                | 4.4  | 89        |
| 96  | Viral Vector Mediated Overexpression of Human α-Synuclein in the Nigrostriatal Dopaminergic<br>Neurons: A New Model for Parkinson's Disease. CNS Spectrums, 2005, 10, 235-244.                                                                                                   | 1.2  | 31        |
| 97  | Isolation and characterization of neural precursor cells from theSox1-GFP reporter mouse. European<br>Journal of Neuroscience, 2005, 22, 1555-1569.                                                                                                                              | 2.6  | 53        |
| 98  | Functional properties and synaptic integration of genetically labelled dopaminergic neurons in intrastriatal grafts. European Journal of Neuroscience, 2005, 21, 2793-2799.                                                                                                      | 2.6  | 35        |
| 99  | Imaging in cell-based therapy for neurodegenerative diseases. European Journal of Nuclear Medicine<br>and Molecular Imaging, 2005, 32, S417-S434.                                                                                                                                | 6.4  | 16        |
| 100 | Continuous Low-Level Glial Cell Line-Derived Neurotrophic Factor Delivery Using Recombinant<br>Adeno-Associated Viral Vectors Provides Neuroprotection and Induces Behavioral Recovery in a<br>Primate Model of Parkinson's Disease. Journal of Neuroscience, 2005, 25, 769-777. | 3.6  | 212       |
| 101 | Reversal of dyskinesias in an animal model of Parkinson's disease by continuous L-DOPA delivery using rAAV vectors. Brain, 2005, 128, 559-569.                                                                                                                                   | 7.6  | 74        |
| 102 | Histological analysis of fetal dopamine cell suspension grafts in two patients with Parkinson's<br>disease gives promising results. Brain, 2005, 128, 1478-1479.                                                                                                                 | 7.6  | 9         |
| 103 | Lentiviral gene delivery of GDNF into the striatum of R6/2 Huntington mice fails to attenuate behavioral and neuropathological changes. Experimental Neurology, 2005, 193, 65-74.                                                                                                | 4.1  | 45        |
| 104 | Cell transplantation in Parkinson's disease: how can we make it work?. Trends in Neurosciences, 2005, 28, 86-92.                                                                                                                                                                 | 8.6  | 249       |
| 105 | Identification of Dopaminergic Neurons of Nigral and Ventral Tegmental Area Subtypes in Grafts of<br>Fetal Ventral Mesencephalon Based on Cell Morphology, Protein Expression, and Efferent Projections.<br>Journal of Neuroscience, 2005, 25, 6467-6477.                        | 3.6  | 212       |
| 106 | Overexpression of Glial Cell Line-Derived Neurotrophic Factor Using a Lentiviral Vector Induces Time-<br>and Dose-Dependent Downregulation of Tyrosine Hydroxylase in the Intact Nigrostriatal Dopamine<br>System. Journal of Neuroscience, 2004, 24, 6437-6445.                 | 3.6  | 140       |
| 107 | Dissociation between short-term increased graft survival and long-term functional improvements in<br>Parkinsonian rats overexpressing glial cell line-derived neurotrophic factor. European Journal of<br>Neuroscience, 2004, 20, 3121-3130.                                     | 2.6  | 25        |
| 108 | Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nature Neuroscience, 2004, 7, 105-110.                                                                                                                                                                 | 14.8 | 262       |

| #   | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Regulated Delivery of Glial Cell Line-Derived Neurotrophic Factor into Rat Striatum, Using a<br>Tetracycline-Dependent Lentiviral Vector. Human Gene Therapy, 2004, 15, 934-944.                                                                                         | 2.7  | 96        |
| 110 | Adult Bone Marrow-Derived Cell Fusion with Cardiomyocytes and Purkinje Neurons in Response to<br>Irradiation but Not in Steady State Blood, 2004, 104, 3604-3604.                                                                                                        | 1.4  | 0         |
| 111 | Long-term striatal overexpression of GDNF selectively downregulates tyrosine hydroxylase in the intact nigrostriatal dopamine system. European Journal of Neuroscience, 2003, 17, 260-270.                                                                               | 2.6  | 114       |
| 112 | Anterograde delivery of brainâ€derived neurotrophic factor to striatum via nigral transduction of recombinant adenoâ€associated virus increases neuronal death but promotes neurogenic response following stroke. European Journal of Neuroscience, 2003, 17, 2667-2678. | 2.6  | 56        |
| 113 | Elevated GDNF levels following viral vector-mediated gene transfer can increase neuronal death<br>after stroke in rats. Neurobiology of Disease, 2003, 14, 542-556.                                                                                                      | 4.4  | 58        |
| 114 | Recombinant adeno-associated viral vector (rAAV) delivery of GDNF provides protection against<br>6-OHDA lesion in the common marmoset monkey (Callithrix jacchus). Experimental Neurology, 2003,<br>184, 536-548.                                                        | 4.1  | 94        |
| 115 | Modeling CNS neurodegeneration by overexpression of disease-causing proteins using viral vectors.<br>Trends in Neurosciences, 2003, 26, 386-392.                                                                                                                         | 8.6  | 96        |
| 116 | Nigrostriatal Â-synucleinopathy induced by viral vector-mediated overexpression of human Â-synuclein:<br>A new primate model of Parkinson's disease. Proceedings of the National Academy of Sciences of the<br>United States of America, 2003, 100, 2884-2889.           | 7.1  | 382       |
| 117 | Reversal of motor impairments in parkinsonian rats by continuous intrastriatal delivery of<br><scp>l</scp> -dopa using rAAV-mediated gene transfer. Proceedings of the National Academy of<br>Sciences of the United States of America, 2002, 99, 4708-4713.             | 7.1  | 137       |
| 118 | Neuroprotection in the rat Parkinson model by intrastriatal GDNF gene transfer using a lentiviral vector. NeuroReport, 2002, 13, 75-82.                                                                                                                                  | 1.2  | 123       |
| 119 | Parkinson-Like Neurodegeneration Induced by Targeted Overexpression of α-Synuclein in the Nigrostriatal System. Journal of Neuroscience, 2002, 22, 2780-2791.                                                                                                            | 3.6  | 633       |
| 120 | l-DOPA-Induced Dyskinesia in the Intrastriatal 6-Hydroxydopamine Model of Parkinson's Disease:<br>Relation to Motor and Cellular Parameters of Nigrostriatal Function. Neurobiology of Disease, 2002,<br>10, 165-186.                                                    | 4.4  | 378       |
| 121 | Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Medicine, 2002, 8, 963-970.                                                                                                                                                      | 30.7 | 2,613     |
| 122 | Growth and Functional Efficacy of Intrastriatal Nigral Transplants Depend on the Extent of Nigrostriatal Degeneration. Journal of Neuroscience, 2001, 21, 2889-2896.                                                                                                     | 3.6  | 100       |
| 123 | Delayed infusion of GDNF promotes recovery of motor function in the partial lesion model of<br>Parkinson's disease. European Journal of Neuroscience, 2001, 13, 1589-1599.                                                                                               | 2.6  | 115       |
| 124 | Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA<br>lesion model depends on the site of administration of the trophic factor. European Journal of<br>Neuroscience, 2000, 12, 3871-3882.                                   | 2.6  | 182       |
| 125 | Long-Term rAAV-Mediated Gene Transfer of GDNF in the Rat Parkinson's Model: Intrastriatal But Not<br>Intranigral Transduction Promotes Functional Regeneration in the Lesioned Nigrostriatal System.<br>Journal of Neuroscience, 2000, 20, 4686-4700.                    | 3.6  | 386       |
| 126 | Chapter 11 Transplantation in the rat model of Parkinson's disease: ectopic versus homotopic graft placement. Progress in Brain Research, 2000, 127, 233-265.                                                                                                            | 1.4  | 85        |

| #   | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | In Vivo Protection of Nigral Dopamine Neurons by Lentiviral Gene Transfer of the Novel GDNF-Family<br>Member Neublastin/Artemin. Molecular and Cellular Neurosciences, 2000, 15, 199-214.                                                                      | 2.2 | 134       |
| 128 | Protection and regeneration of nigral dopaminergic neurons by neurturin or GDNF in a partial lesion<br>model of Parkinson's disease after administration into the striatum or the lateral ventricle. European<br>Journal of Neuroscience, 1999, 11, 1554-1566. | 2.6 | 219       |
| 129 | Neurturin enhances the survival of intrastriatal fetal dopaminergic transplants. NeuroReport, 1999,<br>10, 1783-1887.                                                                                                                                          | 1.2 | 40        |
| 130 | Neurturin Exerts Potent Actions on Survival and Function of Midbrain Dopaminergic Neurons.<br>Journal of Neuroscience, 1998, 18, 4929-4937.                                                                                                                    | 3.6 | 308       |
| 131 | Acute Contractile Effects of Epidermal Growth Factor on Bladder Smooth Muscles: An <i>In Vivo</i> and <i>In Vitro</i> Study in Rats. Scandinavian Journal of Urology and Nephrology, 1997, 31, 231-235.                                                        | 1.4 | 5         |
| 132 | Studies on Neuroprotective and Regenerative Effects of GDNF in a Partial Lesion Model of Parkinson's<br>Disease. Neurobiology of Disease, 1997, 4, 186-200.                                                                                                    | 4.4 | 239       |