BogusÅ, awa Budziszewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3046341/publications.pdf

Version: 2024-02-01

304743 330143 62 1,546 22 37 g-index citations h-index papers 65 65 65 2260 docs citations times ranked all docs citing authors

#	Article	IF	CITATIONS
1	Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Frontiers in Cellular Neuroscience, 2015, 9, 82.	3.7	108
2	The effect of antidepressant drugs on the HPA axis activity, glucocorticoid receptor level and FKBP51 concentration in prenatally stressed rats. Psychoneuroendocrinology, 2009, 34, 822-832.	2.7	103
3	Antidepressant drugs inhibit glucocorticoid receptor-mediated gene transcription - a possible mechanism. British Journal of Pharmacology, 2000, 130, 1385-1393.	5.4	95
4	Targeting the NLRP3 Inflammasome-Related Pathways via Tianeptine Treatment-Suppressed Microglia Polarization to the M1 Phenotype in Lipopolysaccharide-Stimulated Cultures. International Journal of Molecular Sciences, 2018, 19, 1965.	4.1	84
5	Brain glucose metabolism in an animal model of depression. Neuroscience, 2015, 295, 198-208.	2.3	66
6	Neuroendocrine link between stress, depression and diabetes. Pharmacological Reports, 2013, 65, 1591-1600.	3.3	59
7	Maternal stress predicts altered biogenesis and the profile of mitochondrial proteins in the frontal cortex and hippocampus of adult offspring rats. Psychoneuroendocrinology, 2015, 60, 151-162.	2.7	55
8	Antipsychotic Drugs Inhibit the Human Corticotropin-Releasing-Hormone Gene Promoter Activity in Neuro-2A Cellsâ€"an Involvement of Protein Kinases. Neuropsychopharmacology, 2006, 31, 853-865.	5.4	49
9	Hyperactivity of the hypothalamus–pituitary–adrenal axis in lipopolysaccharide-induced neurodevelopmental model of schizophrenia in rats: Effects of antipsychotic drugs. European Journal of Pharmacology, 2011, 650, 586-595.	3.5	43
10	The decrease in JNK- and p38-MAP kinase activity is accompanied by the enhancement of PP2A phosphate level in the brain of prenatally stressed rats. Journal of Physiology and Pharmacology, 2010, 61, 207-15.	1.1	43
11	The effect of repeated amphetamine and cocaine administration on adrenal, gonadal and thyroid hormone levels in the rat plasma. Experimental and Clinical Endocrinology and Diabetes, 1996, 104, 334-338.	1.2	42
12	Elevated Brain Glucose and Glycogen Concentrations in an Animal Model of Depression. Neuroendocrinology, 2014, 100, 178-190.	2.5	39
13	Level of S100B protein, neuron specific enolase, orexin A, adiponectin and insulin-like growth factor in serum of pediatric patients suffering from sleep disorders with or without epilepsy. Pharmacological Reports, 2012, 64, 1427-1433.	3.3	34
14	Effects of neurosteroids on hydrogen peroxide―and staurosporineâ€induced damage of human neuroblastoma SHâ€SY5Y cells. Journal of Neuroscience Research, 2008, 86, 1361-1370.	2.9	33
15	Prenatal administration of lipopolysaccharide induces sex-dependent changes in glutamic acid decarboxylase and parvalbumin in the adult rat brain. Neuroscience, 2015, 287, 78-92.	2.3	33
16	Protective effects of neurosteroids against NMDA-induced seizures and lethality in mice. European Neuropsychopharmacology, 1998, 8, 7-12.	0.7	32
17	Beneficial impact of intracerebroventricular fractalkine administration on behavioral and biochemical changes induced by prenatal stress in adult rats: Possible role of NLRP3 inflammasome pathway. Biochemical Pharmacology, 2016, 113, 45-56.	4.4	31
18	Prenatal stress decreases glycogen synthase kinase-3 phosphorylation in the rat frontal cortex. Pharmacological Reports, 2009, 61, 612-620.	3.3	29

#	Article	IF	CITATIONS
19	Estrone, but not $17\hat{l}^2$ -estradiol, attenuates kainate-induced seizures and toxicity in male mice. Experimental and Clinical Endocrinology and Diabetes, 2001, 109, 168-173.	1.2	27
20	Regulation of the Human Corticotropin-Releasing-Hormone Gene Promoter Activity by Antidepressant Drugs in Neuro-2A and AtT-20 Cells. Neuropsychopharmacology, 2004, 29, 785-794.	5.4	26
21	Impaired Brain Energy Metabolism: Involvement in Depression and Hypothyroidism. Frontiers in Neuroscience, 2020, 14, 586939.	2.8	26
22	Excitatory neurosteroids attenuate apoptotic and excitotoxic cell death in primary cortical neurons. Journal of Physiology and Pharmacology, 2008, 59, 457-75.	1.1	24
23	The Beneficial Impact of Antidepressant Drugs on Prenatal Stress-Evoked Malfunction of the Insulin-Like Growth Factor-1 (IGF-1) Protein Family in the Olfactory Bulbs of Adult Rats. Neurotoxicity Research, 2016, 29, 288-298.	2.7	23
24	Effects of ethylene glycol ethers on cell viability in the human neuroblastoma SH-SY5Y cell line. Pharmacological Reports, 2010, 62, 1243-1249.	3.3	21
25	Chronic mild stress influences nerve growth factor through a matrix metalloproteinase-dependent mechanism. Psychoneuroendocrinology, 2016, 66, 11-21.	2.7	21
26	The effect of chronic tianeptine administration on the brain mitochondria: direct links with an animal model of depression. Molecular Neurobiology, 2016, 53, 7351-7362.	4.0	21
27	Evaluation of the effectiveness of chronic antidepressant drug treatments in the hippocampal mitochondria $\hat{a} \in A$ proteomic study in an animal model of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 78, 51-60.	4.8	21
28	Prenatal stress leads to changes in IGF-1 binding proteins network in the hippocampus and frontal cortex of adult male rat. Neuroscience, 2014, 274, 59-68.	2.3	20
29	Inhibitory effect of imipramine on the human corticotropin-releasing-hormone gene promoter activity operates through a PI3-K/AKT mediated pathway. Neuropharmacology, 2005, 49, 156-164.	4.1	19
30	The effect of N-nitro-L-arginine methyl ester on morphine-induced changes in the plasma corticosterone and testosterone levels in mice. Experimental and Clinical Endocrinology and Diabetes, 1999, 107, 75-79.	1.2	18
31	Brain Metabolic Alterations in Rats Showing Depression-Like and Obesity Phenotypes. Neurotoxicity Research, 2020, 37, 406-424.	2.7	18
32	The effect of chronic treatment with antidepressant drugs on the corticosteroid receptor levels in the rat hippocampus. Polish Journal of Pharmacology, 1994, 46, 147-52.	0.3	18
33	Pro-apoptotic Action of Corticosterone in Hippocampal Organotypic Cultures. Neurotoxicity Research, 2016, 30, 225-238.	2.7	17
34	Effects of neurosteroids on the human corticotropin-releasing hormone gene. Pharmacological Reports, 2010, 62, 1030-1040.	3.3	16
35	Effects of neurosteroids on glucocorticoid receptor-mediated gene transcription in LMCAT cellsâ€"A possible interaction with psychotropic drugs. European Neuropsychopharmacology, 2007, 17, 37-45.	0.7	14
36	Nanocapsules with Polyelectrolyte Shell as a Platform for 1,25-dihydroxyvitamin D3 Neuroprotection: Study in Organotypic Hippocampal Slices. Neurotoxicity Research, 2016, 30, 581-592.	2.7	14

#	Article	IF	CITATIONS
37	Regulation of insulin receptor phosphorylation in the brains of prenatally stressed rats: New insight into the benefits of antidepressant drug treatment. European Neuropsychopharmacology, 2017, 27, 120-131.	0.7	14
38	Repeated morphine administration down-regulates glucocorticoid, but not mineralocorticoid, receptors in the rat hippocampus. Psychoneuroendocrinology, 1995, 20, 75-81.	2.7	13
39	Mood stabilizers inhibit glucocorticoid receptor function in LMCAT cells. European Journal of Pharmacology, 2004, 495, 103-110.	3.5	13
40	Ethylene Glycol Ethers Induce Oxidative Stress in the Rat Brain. Neurotoxicity Research, 2014, 26, 422-429.	2.7	13
41	Catalase activity in blood fractions of patients with sporadic ALS. Pharmacological Reports, 2014, 66, 704-707.	3.3	13
42	Potential neurotoxic effect of ethylene glycol ethers mixtures. Pharmacological Reports, 2013, 65, 1415-1421.	3.3	12
43	Neurosteroids and the naloxone-precipitated withdrawal syndrome in morphine-dependent mice. European Neuropsychopharmacology, 1996, 6, 135-140.	0.7	11
44	Hematological effects of exposure to mixtures of selected ethylene glycol alkyl ethers in rats. Pharmacological Reports, 2012, 64, 166-178.	3.3	11
45	Regulators of glucocorticoid receptor function in an animal model of depression and obesity. Journal of Neuroendocrinology, 2018, 30, e12591.	2.6	10
46	The reduced level of growth factors in an animal model of depression is accompanied by regulated necrosis in the frontal cortex but not in the hippocampus. Psychoneuroendocrinology, 2018, 94, 121-133.	2.7	10
47	Hypothalamic insulin and glucagon-like peptide-1 levels in an animal model of depression and their effect on corticotropin-releasing hormone promoter gene activity in a hypothalamic cell line. Pharmacological Reports, 2019, 71, 338-346.	3.3	10
48	Effects of neurosteroids on neuronal survival: molecular basis and clinical perspectives. Acta Neurobiologiae Experimentalis, 2006, 66, 359-67.	0.7	9
49	New trends in the neurobiology and pharmacology of affective disorders. Pharmacological Reports, 2013, 65, 1441-1450.	3.3	8
50	Mitochondria-targeting therapeutic strategies in the treatment of depression. Mitochondrion, 2021, 58, 169-178.	3.4	8
51	The effect of active and passive intravenous cocaine administration on the extracellular signal-regulated kinase (ERK) activity in the rat brain. Pharmacological Reports, 2014, 66, 630-637.	3.3	7
52	Effect of lipopolysaccharide and antidepressant drugs on glucocorticoid receptor-mediated gene transcription. Pharmacological Reports, 2005, 57, 540-4.	3.3	7
53	Venlafaxine and L-Thyroxine Treatment Combination: Impact on Metabolic and Synaptic Plasticity Changes in an Animal Model of Coexisting Depression and Hypothyroidism. Cells, 2021, 10, 1394.	4.1	6
54	Effect of antidepressant drugs on the human corticotropin-releasing-hormone gene promoter activity in neuro-2A cells. Polish Journal of Pharmacology, 2002, 54, 711-6.	0.3	4

#	Article	IF	CITATIONS
55	The effect of N-nitro-L-arginine methyl ester on cocaine-induced hormonal changes in mice. Experimental and Clinical Endocrinology and Diabetes, 1998, 106, 340-345.	1.2	3
56	Participation of protein kinases in cytotoxic and proapoptotic effects of ethylene glycol ethers and their metabolites in SH-SY5Y cells. Toxicology in Vitro, 2016, 36, 153-163.	2.4	3
57	Ethylene glycol ethers induce apoptosis and disturb glucose metabolism in the rat brain. Pharmacological Reports, 2016, 68, 162-171.	3.3	3
58	Pharmacological modulation of glucocorticoid and mineralocorticoid receptors in the rat central nervous system. Polish Journal of Pharmacology, 1994, 46, 97-102.	0.3	3
59	Repeated cocaine administration down-regulates glucocorticoid receptors in the rat brain cortex and hippocampus. Polish Journal of Pharmacology, 1996, 48, 575-81.	0.3	3
60	Role of the serotoninergic system in the regulation of glucocorticoid and mineralocorticoid receptors in the rat hippocampus. Polish Journal of Pharmacology, 1995, 47, 299-304.	0.3	2
61	Repeated amphetamine administration down-regulates glucocorticoid, but not mineralocorticoid, receptors in the rat hippocampus. Polish Journal of Pharmacology, 1995, 47, 401-6.	0.3	2
62	Neurotoxicity in Depression. , 2021, , 1-30.		0