## **Raymond D Blind**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3045846/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Glucocorticoid Receptor Phosphorylation Differentially Affects Target Gene Expression. Molecular<br>Endocrinology, 2008, 22, 1754-1766.                                                                    | 3.7  | 234       |
| 2  | Stimulating the GPR30 Estrogen Receptor with a Novel Tamoxifen Analogue Activates SF-1 and Promotes Endometrial Cell Proliferation. Cancer Research, 2009, 69, 5415-5423.                                  | 0.9  | 133       |
| 3  | Differential recruitment of glucocorticoid receptor phospho-isoforms to glucocorticoid-induced genes. Journal of Steroid Biochemistry and Molecular Biology, 2008, 109, 150-157.                           | 2.5  | 106       |
| 4  | Direct Modification and Activation of a Nuclear Receptor–PIP <sub>2</sub> Complex by the Inositol<br>Lipid Kinase IPMK. Science Signaling, 2012, 5, ra44.                                                  | 3.6  | 96        |
| 5  | Structure of SF-1 Bound by Different Phospholipids: Evidence for Regulatory Ligands. Molecular<br>Endocrinology, 2009, 23, 25-34.                                                                          | 3.7  | 71        |
| 6  | Small Molecule Agonists of the Orphan Nuclear Receptors Steroidogenic Factor-1 (SF-1, NR5A1) and<br>Liver Receptor Homologue-1 (LRH-1, NR5A2). Journal of Medicinal Chemistry, 2011, 54, 2266-2281.        | 6.4  | 71        |
| 7  | The signaling phospholipid PIP3creates a new interaction surface on the nuclear receptor SF-1.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15054-15059. | 7.1  | 70        |
| 8  | Human islets expressing HNF1A variant have defective β cell transcriptional regulatory networks.<br>Journal of Clinical Investigation, 2018, 129, 246-251.                                                 | 8.2  | 65        |
| 9  | Regulation of C. elegans Fat Uptake and Storage by Acyl-CoA Synthase-3 Is Dependent on NR5A Family<br>Nuclear Hormone Receptor nhr-25. Cell Metabolism, 2010, 12, 398-410.                                 | 16.2 | 57        |
| 10 | Structure of Liver Receptor Homolog-1 (NR5A2) with PIP3 hormone bound in the ligand binding pocket.<br>Journal of Structural Biology, 2015, 192, 342-348.                                                  | 2.8  | 44        |
| 11 | Stabilization of the Unliganded Glucocorticoid Receptor by TSG101. Journal of Biological Chemistry, 2005, 280, 11120-11126.                                                                                | 3.4  | 42        |
| 12 | Nuclear phosphoinositide regulation of chromatin. Journal of Cellular Physiology, 2018, 233, 107-123.                                                                                                      | 4.1  | 39        |
| 13 | Phospholipid regulation of the nuclear receptor superfamily. Advances in Biological Regulation, 2017, 63, 6-14.                                                                                            | 2.3  | 31        |
| 14 | Inositol polyphosphate multikinase (IPMK) in transcriptional regulation and nuclear inositide metabolism. Biochemical Society Transactions, 2016, 44, 279-285.                                             | 3.4  | 26        |
| 15 | Structural analyses of inositol phosphate second messengers bound to signaling effector proteins.<br>Advances in Biological Regulation, 2020, 75, 100667.                                                  | 2.3  | 25        |
| 16 | Disentangling biological signaling networks byÂdynamic coupling of signaling lipids toÂmodifying<br>enzymes. Advances in Biological Regulation, 2014, 54, 25-38.                                           | 2.3  | 23        |
| 17 | Integrated Structural Modeling of Full-Length LRH-1 Reveals Inter-domain Interactions Contribute to Receptor Structure and Function. Structure, 2020, 28, 830-846.e9.                                      | 3.3  | 22        |
| 18 | Signaling through non-membrane nuclear phosphoinositide binding proteins in human health and disease. Journal of Lipid Research, 2019, 60, 299-311.                                                        | 4.2  | 12        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Crystallographic and kinetic analyses of human IPMK reveal disordered domains modulate ATP binding and kinase activity. Scientific Reports, 2018, 8, 16672.                                          | 3.3 | 9         |
| 20 | Ligand structural motifs can decouple glucocorticoid receptor transcriptional activation from<br>target promoter occupancy. Biochemical and Biophysical Research Communications, 2012, 420, 839-844. | 2.1 | 8         |
| 21 | Applying innovative educational principles when classes grow and resources are limited. Biochemistry and Molecular Biology Education, 2008, 36, 387-394.                                             | 1.2 | 4         |
| 22 | The acyl chains of phosphoinositide PIP3 alter the structure and function of nuclear receptor steroidogenic factor-1. Journal of Lipid Research, 2021, 62, 100081.                                   | 4.2 | 4         |
| 23 | The Signaling Phospholipid PIP 3 Functions As a Ligand Hormone For Nuclear Receptors. FASEB Journal, 2015, 29, 493.3.                                                                                | 0.5 | 0         |