
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3045807/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fodder biomass, nutritive value, and grain yield of dualâ€purpose improved cereal crops in Burkina Faso. Agronomy Journal, 2022, 114, 115-125.	1.8	10
2	Shade and nitrogen fertilization affect forage accumulation and nutritive value of C4 grasses differing in growth habit. Crop Science, 2022, 62, 512-523.	1.8	4
3	Herbage accumulation and nutritive value of cultivar Mulato II, Congo grass, and Guinea grass cultivar C1 in a subhumid zone of West Africa. Agronomy Journal, 2022, 114, 138-147.	1.8	3
4	Fodder development in subâ \in Saharan Africa: An introduction. Agronomy Journal, 2022, 114, 1-7.	1.8	11
5	Integration of Genomics with Crop Modeling for Predicting Rice Days to Flowering: A Multi-Model Analysis. Field Crops Research, 2022, 276, 108394.	5.1	6
6	Brassica carinata as an off-season crop in the southeastern USA: Determining optimum sowing dates based on climate risks and potential effects on summer crop yield. Agricultural Systems, 2022, 196, 103344.	6.1	12
7	A traitâ€based model ensemble approach to design rice plant types for future climate. Global Change Biology, 2022, 28, 2689-2710.	9.5	8
8	Are soybean models ready for climate change food impact assessments?. European Journal of Agronomy, 2022, 135, 126482.	4.1	25
9	Modeling Yield, Biogenic Emissions, and Carbon Sequestration in Southeastern Cropping Systems With Winter Carinata. Frontiers in Energy Research, 2022, 10, .	2.3	9
10	Predicting soybean evapotranspiration and crop water productivity for a tropical environment using the CSM-CROPGRO-Soybean model. Agricultural and Forest Meteorology, 2022, 323, 109075.	4.8	3
11	Physiological responses and forage accumulation of Marandu palisadegrass and Mombaça guineagrass to nitrogen fertilizer in the Brazilian forageâ€based systems. Grassland Science, 2021, 67, 93-101.	1.1	2
12	Energy balance in the DSSAT-CSM-CROPGRO model. Agricultural and Forest Meteorology, 2021, 297, 108241.	4.8	13
13	Cultivar Coefficient Estimator for the Cropping System Model Based on Time-Series Data: A Case Study for Soybean. Transactions of the ASABE, 2021, 64, 1391-1402.	1.1	7
14	<i>Brassica carinata</i> : Biology and agronomy as a biofuel crop. GCB Bioenergy, 2021, 13, 582-599.	5.6	37
15	Deriving genetic coefficients from variety trials to determine sorghum hybrid performance using the CSM–CERES–Sorghum model. Agronomy Journal, 2021, 113, 2591-2606.	1.8	4
16	Adapting the CROPGRO model to simulate growth and production of Brassica carinata , a bioâ€fuel crop. GCB Bioenergy, 2021, 13, 1134-1148.	5.6	13
17	Yield Response of an Ensemble of Potato Crop Models to Elevated CO2 in Continental Europe. European Journal of Agronomy, 2021, 126, 126265.	4.1	6

Physiological analysis of growth and development of winter carinata (<i>Brassica carinata </i> A.) Tj ETQq0 0 0 rgBT_/Overlock 10 Tf 50 6

#	Article	IF	CITATIONS
19	<i>Brassica carinata</i> biomass, yield, and seed chemical composition response to nitrogen rates and timing on southern Coastal Plain soils in the United States. GCB Bioenergy, 2021, 13, 1275-1289.	5.6	14
20	Performance of the CSM-CROPGRO-soybean in simulating soybean growth and development and the soil water balance for a tropical environment. Agricultural Water Management, 2021, 252, 106929.	5.6	5
21	Improving the CROPGRO Perennial Forage Model for simulating growth and biomass partitioning of guineagrass. Agronomy Journal, 2021, 113, 3299-3314.	1.8	1
22	Incorporating a dynamic gene-based process module into a crop simulation model. In Silico Plants, 2021, 3, .	1.9	8
23	Simulating alfalfa regrowth and biomass in eastern Canada using the CSM-CROPGRO-perennial forage model. European Journal of Agronomy, 2020, 113, 125971.	4.1	17
24	Growth stages and developmental patterns of guar. Agronomy Journal, 2020, 112, 4990-5001.	1.8	14
25	Narrowing uncertainties in the effects of elevated CO2 on crops. Nature Food, 2020, 1, 775-782.	14.0	67
26	Evaluating Improved Management Practices to Minimize Aflatoxin Contamination in the Field, During Drying, and in Storage in Ghana. Peanut Science, 2020, , .	0.1	3
27	Adapting the CROPGRO model to simulate chia growth and yield. Agronomy Journal, 2020, 112, 3859-3877.	1.8	1
28	Improving adoption of technologies and interventions for increasing supply of quality livestock feed in low- and middle-income countries. Global Food Security, 2020, 26, 100372.	8.1	55
29	Adaptation strategies for maize production under climate change for semi-arid environments. European Journal of Agronomy, 2020, 115, 126040.	4.1	49
30	Modelling climate change impacts on maize yields under low nitrogen input conditions in sub‧aharan Africa. Global Change Biology, 2020, 26, 5942-5964.	9.5	60
31	Modifying the CROPGRO Safflower Model to Simulate Growth, Seed and Floret Yield under Field Conditions in Southwestern Germany. Agronomy, 2020, 10, 11.	3.0	2
32	Minimizing Aflatoxin Contamination in the Field, During Drying, and in Storage in Ghana. Peanut Science, 2020, 47, 72-80.	0.1	4
33	Estimating the potential impact of climate change on sunflower yield in the Konya province of Turkey. Journal of Agricultural Science, 2020, 158, 806-818.	1.3	7
34	A SIMPLE crop model. European Journal of Agronomy, 2019, 104, 97-106.	4.1	67
35	Simulation of productivity and soil moisture under Marandu palisade grass using the CSM-CROPGRO-Perennial Forage model. Crop and Pasture Science, 2019, 70, 159.	1.5	6
36	Remotely sensed vegetation index and LAI for parameter determination of the CSM-CROPGRO-Soybean model when in situ data are not available. International Journal of Applied Earth Observation and Geoinformation, 2019, 79, 110-115.	2.8	12

#	Article	IF	CITATIONS
37	Simulation of maize evapotranspiration: An inter-comparison among 29 maize models. Agricultural and Forest Meteorology, 2019, 271, 264-284.	4.8	62
38	Simulating Growth and Development Processes of Quinoa (Chenopodium quinoa Willd.): Adaptation and Evaluation of the CSM-CROPGRO Model. Agronomy, 2019, 9, 832.	3.0	8
39	Sensitivity of Maize Yield in Smallholder Systems to Climate Scenarios in Semi-Arid Regions of West Africa: Accounting for Variability in Farm Management Practices. Agronomy, 2019, 9, 639.	3.0	22
40	The DSSAT crop modeling ecosystem. Burleigh Dodds Series in Agricultural Science, 2019, , 173-216.	0.2	147
41	Elevated temperature intensity, timing, and duration of exposure affect soybean internode elongation, mainstem node number, and pod number per plant. Crop Journal, 2018, 6, 148-161.	5.2	33
42	Impacts of 1.5 versus 2.0 °C on cereal yields in the West African Sudan Savanna. Environmental Research Letters, 2018, 13, 034014.	5.2	70
43	How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield?. European Journal of Agronomy, 2018, 100, 67-75.	4.1	68
44	Characterizing agricultural impacts of recent large-scale US droughts and changing technology and management. Agricultural Systems, 2018, 159, 275-281.	6.1	26
45	Potential benefits of drought and heat tolerance for adapting maize to climate change in tropical environments. Climate Risk Management, 2018, 19, 106-119.	3.2	68
46	Peanut (<i>Arachis hypogaea</i>) response to weed and disease management in northern Ghana. International Journal of Pest Management, 2018, 64, 204-209.	1.8	4
47	A dynamic model with QTL covariables for predicting flowering time of common bean (Phaseolus) Tj ETQq1 1 0.	784314 rg 4.1	BT/Qverlock
48	Adapting the CROPGRO Model to Simulate Alfalfa Growth and Yield. Agronomy Journal, 2018, 110, 1777-1790.	1.8	31
49	Brief history of agricultural systems modeling. Agricultural Systems, 2017, 155, 240-254.	6.1	403
50	Estimating water balance, evapotranspiration and water use efficiency of spring safflower using the CROPGRO model. Agricultural Water Management, 2017, 185, 137-144.	5.6	17
51	Development of a QTL-environment-based predictive model for node addition rate in common bean. Theoretical and Applied Genetics, 2017, 130, 1065-1079.	3.6	7
52	A Predictive Model for Time-to-Flowering in the Common Bean Based on QTL and Environmental Variables. G3: Genes, Genomes, Genetics, 2017, 7, 3901-3912.	1.8	25
53	An AgMIP framework for improved agricultural representation in integrated assessment models. Environmental Research Letters, 2017, 12, 125003.	5.2	54
54	A Stochastic Method for Crop Models: Including Uncertainty in a Sugarcane Model. Agronomy Journal, 2017, 109, 483-495.	1.8	20

#	Article	IF	CITATIONS
55	Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil. Field Crops Research, 2017, 200, 28-37.	5.1	82
56	Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems, 2017, 155, 269-288.	6.1	261
57	A potato model intercomparison across varying climates and productivity levels. Global Change Biology, 2017, 23, 1258-1281.	9.5	90
58	Accounting for both parameter and model structure uncertainty in crop model predictions of phenology: A case study on rice. European Journal of Agronomy, 2017, 88, 53-62.	4.1	53
59	Assessment of soybean yield with altered water-related genetic improvement traits under climate change in Southern Brazil. European Journal of Agronomy, 2017, 83, 1-14.	4.1	45
60	Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments. Scientific Reports, 2017, 7, 14858.	3.3	41
61	Developmental Studies of Maize-Infesting Picture-Winged Flies (Diptera: Ulidiidae). Environmental Entomology, 2017, 46, 946-953.	1.4	6
62	Simulated Optimum Sowing Date for Forage Pearl Millet Cultivars in Multilocation Trials in Brazilian Semi-Arid Region. Frontiers in Plant Science, 2017, 8, 2074.	3.6	6
63	Reliability of Genotype-Specific Parameter Estimation for Crop Models: Insights from a Markov Chain Monte-Carlo Estimation Approach. Transactions of the ASABE, 2017, 60, 1699-1712.	1.1	10
64	Adapting the CROPGRO Model to Simulate Growth and Yield of Spring Safflower in Semiarid Conditions. Agronomy Journal, 2016, 108, 64-72.	1.8	19
65	Multi-wheat-model ensemble responses to interannual climate variability. Environmental Modelling and Software, 2016, 81, 86-101.	4.5	50
66	Regional disparities in the beneficial effects of rising CO2 concentrations on crop waterÂproductivity. Nature Climate Change, 2016, 6, 786-790.	18.8	190
67	Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2. Field Crops Research, 2016, 198, 80-92.	5.1	47
68	A taxonomy-based approach to shed light on the babel of mathematical models for rice simulation. Environmental Modelling and Software, 2016, 85, 332-341.	4.5	18
69	Drought impact on rainfed common bean production areas in Brazil. Agricultural and Forest Meteorology, 2016, 225, 57-74.	4.8	51
70	Crop Modeling Approaches for Predicting Phenotype of Grain Legumes with Linkage to Genetic Information. , 2016, , 163-192.		2
71	Genetic Improvement of Peanut Cultivars for West Africa Evaluated with the CSM ROPGROâ€Peanut Model. Agronomy Journal, 2015, 107, 2213-2229.	1.8	4
72	Estimation of Nitrogen Pools in Irrigated Potato Production on Sandy Soil Using the Model SUBSTOR. PLoS ONE, 2015, 10, e0117891.	2.5	37

#	Article	IF	CITATIONS
73	Maize systems under climate change in sub-Saharan Africa. International Journal of Climate Change Strategies and Management, 2015, 7, 247-271.	2.9	91
74	Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 2015, 21, 1328-1341.	9.5	339
75	Adapting the CSM-CROPGRO model for pigeonpea using sequential parameter estimation. Field Crops Research, 2015, 181, 1-15.	5.1	16
76	Analysis and classification of data sets for calibration and validation of agro-ecosystem models. Environmental Modelling and Software, 2015, 72, 402-417.	4.5	112
77	Crop Diseases and Climate Change in the AgMIP Framework. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 297-330.	0.4	5
78	AgMIP's Transdisciplinary Agricultural Systems Approach to Regional Integrated Assessment of Climate Impacts, Vulnerability, and Adaptation. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 27-44.	0.4	20
79	Cropping Systems Modeling in AgMIP: A New Protocol-Driven Approach for Regional Integrated Assessments. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 79-99.	0.4	4
80	Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology, 2015, 21, 911-925.	9.5	387
81	Yield Improvement and Genotype × Environment Analyses of Peanut Cultivars in Multilocation Trials in West Africa. Crop Science, 2014, 54, 2413-2422.	1.8	7
82	Harmonization and translation of crop modeling data to ensure interoperability. Environmental Modelling and Software, 2014, 62, 495-508.	4.5	45
83	Simulating forage production of Marandu palisade grass (Brachiaria brizantha) with the CROPGRO-Perennial Forage model. Crop and Pasture Science, 2014, 65, 1335.	1.5	24
84	Base temperature determination of tropical Panicum spp. grasses and its effects on degree-day-based models. Agricultural and Forest Meteorology, 2014, 186, 26-33.	4.8	42
85	Solar ultraviolet radiation exclusion increases soybean internode lengths and plant height. Agricultural and Forest Meteorology, 2014, 184, 170-178.	4.8	48
86	How do various maize crop models vary in their responses to climate change factors?. Global Change Biology, 2014, 20, 2301-2320.	9.5	525
87	Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3268-3273.	7.1	1,649
88	DSSAT Nitrogen Cycle Simulation of Cover Crop–Maize Rotations under Irrigated Mediterranean Conditions. Agronomy Journal, 2014, 106, 1283-1296.	1.8	29
89	Integrated description of agricultural field experiments and production: The ICASA Version 2.0 data standards. Computers and Electronics in Agriculture, 2013, 96, 1-12.	7.7	80
90	From flower to seed: identifying phenological markers and reliable growth functions to model reproductive development in the common bean (<i><scp>P</scp>haseolus vulgaris <scp>L</scp>.</i>). Plant, Cell and Environment, 2013, 36, 2046-2058.	5.7	18

#	Article	IF	CITATIONS
91	Evaluating the fidelity of downscaled climate data on simulated wheat and maize production in the southeastern US. Regional Environmental Change, 2013, 13, 101-110.	2.9	15
92	Putting mechanisms into crop production models. Plant, Cell and Environment, 2013, 36, 1658-1672.	5.7	159
93	Using the CSM ROPGROâ€Peanut Model to Simulate Late Leaf Spot Effects on Peanut Cultivars of Differing Resistance. Agronomy Journal, 2013, 105, 1307-1316.	1.8	6
94	Predicting Growth of <i>Panicum maximum</i> : An Adaptation of the CROPGRO–Perennial Forage Model. Agronomy Journal, 2012, 104, 600-611.	1.8	25
95	The Scientific Grand Challenges of the 21st Century for the Crop Science Society of America. Crop Science, 2012, 52, 1003-1010.	1.8	21
96	Building Capacity for Modeling in Africa. , 2012, , 1-7.		2
97	Alternative plants for development of pictureâ€winged fly pests of maize. Entomologia Experimentalis Et Applicata, 2012, 143, 177-184.	1.4	20
98	Improving the CROPGRO-Tomato Model for Predicting Growth and Yield Response to Temperature. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 1038-1049.	1.0	44
99	Distribution of Picture-Winged Flies (Diptera: Ulidiidae) Infesting Corn in Florida. Florida Entomologist, 2011, 94, 35-47.	0.5	16
100	Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. Journal of Plant Physiology, 2011, 168, 1909-1918.	3.5	118
101	Leaf photosynthesis and carbohydrates of CO2-enriched maize and grain sorghum exposed to a short period of soil water deficit during vegetative development. Journal of Plant Physiology, 2011, 168, 2169-2176.	3.5	34
102	Late Leaf Spot Effects on Growth, Photosynthesis, and Yield in Peanut Cultivars of Differing Resistance. Agronomy Journal, 2011, 103, 85-91.	1.8	35
103	Temperature and Photoperiod Effects on <i>Vicia faba</i> Phenology Simulated by CROPGROâ€Fababean. Agronomy Journal, 2011, 103, 1036-1050.	1.8	7
104	Adapting the CROPGRO perennial forage model to predict growth of Brachiaria brizantha. Field Crops Research, 2011, 120, 370-379.	5.1	46
105	Position Statement on Crop Adaptation to Climate Change. Crop Science, 2011, 51, 2337-2343.	1.8	33
106	Photosynthetic Consequences of Late Leaf Spot Differ between Two Peanut Cultivars with Variable Levels of Resistance. Crop Science, 2011, 51, 2741-2748.	1.8	7
107	New Report of <i>Chaetopsis massyla</i> (Diptera: Ulidiidae) as a Primary Pest of Corn in Florida. Florida Entomologist, 2010, 93, 198-202.	0.5	17
108	Testing Effects of Climate Change in Crop Models. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2010, , 109-129.	0.4	24

#	Article	IF	CITATIONS
109	Use of Crop Models for Climate-Agricultural Decisions. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2010, , 131-157.	0.4	3
110	Short-term high temperature growth conditions during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-mediated sucrose catalysis and microspore meiosis in grain sorghum (Sorghum bicolor). Journal of Plant Physiology, 2010, 167, 578-582.	3.5	65
111	Enhancement in leaf photosynthesis and upregulation of Rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny. Functional Plant Biology, 2009, 36, 761.	2.1	47
112	Response of bahiagrass carbon assimilation and photosystem activity to below optimum temperatures. Functional Plant Biology, 2008, 35, 1243.	2.1	10
113	Improving the CERES-Maize Model Ability to Simulate Water Deficit Impact on Maize Production and Yield Components. Agronomy Journal, 2008, 100, 296.	1.8	15
114	Improving the CERESâ€Maize Model Ability to Simulate Water Deficit Impact on Maize Production and Yield Components. Agronomy Journal, 2008, 100, 296-307.	1.8	39
115	Modeling Nitrogen Fixation and Its Relationship to Nitrogen Uptake in the CROPGRO Model. , 2008, , 13-46.		6
116	Influence of Growth Temperature on the Amounts of Tocopherols, Tocotrienols, and γ-Oryzanol in Brown Rice. Journal of Agricultural and Food Chemistry, 2007, 55, 7559-7565.	5.2	93
117	Regression-Based Evaluation of Ecophysiological Models. Agronomy Journal, 2007, 99, 419-427.	1.8	15
118	Crop response to elevated CO2 and world food supply. European Journal of Agronomy, 2007, 26, 215-223.	4.1	244
119	Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta, 2007, 227, 67-79.	3.2	157
120	Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agricultural and Forest Meteorology, 2006, 139, 237-251.	4.8	362
121	Nitrogen Fertilization Affects Bahiagrass Responses to Elevated Atmospheric Carbon Dioxide. Agronomy Journal, 2006, 98, 382-387.	1.8	12
122	Soil Organic Carbon and Nitrogen Accumulation in Plots of Rhizoma Perennial Peanut and Bahiagrass Grown in Elevated Carbon Dioxide and Temperature. Journal of Environmental Quality, 2006, 35, 1405-1412.	2.0	10
123	Elevated Temperature and CO ₂ Impacts on Pollination, Reproductive Growth, and Yield of Several Globally Important Crops. J Agricultural Meteorology, 2005, 60, 469-474.	1.5	131
124	Testing CERES-Maize versions to estimate maize production in a cool environment. European Journal of Agronomy, 2005, 23, 89-102.	4.1	47
125	The carbohydrate metabolism enzymes sucrose-P synthase and ADG-pyrophosphorylase in phaseolus bean leaves are up-regulated at elevated growth carbon dioxide and temperature. Plant Science, 2004, 166, 1565-1573.	3.6	37
126	Testing and Improving Evapotranspiration and Soil Water Balance of the DSSAT Crop Models. Agronomy Journal, 2004, 96, 1243-1257.	1.8	101

#	Article	IF	CITATIONS
127	Elevated growth CO2 delays drought stress and accelerates recovery of rice leaf photosynthesis. Environmental and Experimental Botany, 2003, 49, 259-272.	4.2	48
128	Super-optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Global Change Biology, 2003, 9, 1775-1787.	9.5	179
129	Adapting the CROPGRO Legume Model to Simulate Growth of Faba Bean. Agronomy Journal, 2002, 94, 743.	1.8	16
130	Adapting the CROPGRO Legume Model to Simulate Growth of Faba Bean. Agronomy Journal, 2002, 94, 743-756.	1.8	88
131	Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus) Tj ETQq1	1 0.784314 9.5	rgBT/Overlo
132	Soybean photosynthesis, Rubisco, and carbohydrate enzymes function at supraoptimal temperatures in elevated CO2. Journal of Plant Physiology, 2001, 158, 295-307.	3.5	81
133	Growth and Canopy Characteristics of Fieldâ€Grown Tomato. Agronomy Journal, 2000, 92, 152-159.	1.8	90
134	Direct effects of atmospheric carbon dioxide concentration on whole canopy dark respiration of rice. Global Change Biology, 2000, 6, 275-286.	9.5	32
135	Nitrogen Stress Effects on Growth and Nitrogen Accumulation by Fieldâ€Grown Tomato. Agronomy Journal, 2000, 92, 159-167.	1.8	80
136	Carbon dioxide and temperature effects on forage establishment: tissue composition and nutritive value. Global Change Biology, 1999, 5, 743-753.	9.5	16
137	Evaluation and improvement of CROPGRO-soybean model for a cool environment in Galicia, northwest Spain. Field Crops Research, 1999, 61, 273-291.	5.1	46
138	Nonstructural carbohydrates of soybean plants grown in subambient and superambient levels of CO2. Photosynthesis Research, 1998, 56, 143-155.	2.9	22
139	Elevated CO2 and water deficit effects on photosynthesis, ribulose bisphosphate carboxylase-oxygenase, and carbohydrate metabolism in rice. Physiologia Plantarum, 1998, 103, 327-339.	5.2	51
140	Changes in Growth CO2 Result in Rapid Adjustments of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Small Subunit Gene Expression in Expanding and Mature Leaves of Rice. Plant Physiology, 1998, 118, 521-529.	4.8	55
141	Chemical Characterization of a Shriveled Seed Trait in Peanut. Crop Science, 1997, 37, 1560-1567.	1.8	8
142	Rice responses to drought under carbon dioxide enrichment. 1. Growth and yield. Global Change Biology, 1997, 3, 119-128.	9.5	51
143	Rice responses to drought under carbon dioxide enrichment. 2. Photosynthesis and evapotranspiration. Global Change Biology, 1997, 3, 129-138.	9.5	53
144	Comparison of Two Phenology Models for Predicting Flowering and Maturity Date of Soybean. Crop Science, 1996, 36, 1606-1614.	1.8	86

#	Article	IF	CITATIONS
145	Potential Uses and Limitations of Crop Models. Agronomy Journal, 1996, 88, 704-716.	1.8	432
146	A Peanut Simulation Model: I. Model Development and Testing. Agronomy Journal, 1995, 87, 1085-1093.	1.8	59
147	Yieldâ€Determining Processes in Relation to Cultivar Seed Size of Common Bean. Crop Science, 1994, 34, 84-91.	1.8	37
148	BEANGRO: A Processâ€Oriented Dry Bean Model with a Versatile User Interface. Agronomy Journal, 1994, 86, 182-190.	1.8	65
149	Modeling the Occurrence of Reproductive Stages after Flowering for Four Soybean Cultivars. Agronomy Journal, 1994, 86, 31-38.	1.8	65
150	Parameter Estimation for Predicting Flowering Date of Soybean Cultivars. Crop Science, 1993, 33, 137-144.	1.8	94
151	Global climate change and US agriculture. Nature, 1990, 345, 219-224.	27.8	616
152	Estimating DSSAT Cropping System Cultivar-Specific Parameters Using Bayesian Techniques. Advances in Agricultural Systems Modeling, 0, , 365-393.	0.3	33
153	Testing Approaches and Components in Physiologically Based Crop Models for Sensitivity to Climatic Factors. Advances in Agricultural Systems Modeling, 0, , 1-31.	0.3	1
154	Sentinel Site Data for Crop Model Improvement-Definition and Characterization. Advances in Agricultural Systems Modeling, 0, , 125-158.	0.3	11
155	Modeling the Effects of Genotypic and Environmental Variation on Maize Phenology: The Phenology Subroutine of the AgMaize Crop Model. Agronomy, 0, , 173-200.	0.2	7
156	Assessment of soybean yield variability in the Southeastern US with the calibration of genetic coefficients from variety trials using CROPGROâ $\in\!$	1.8	5
157	Adapting the CROPGROâ€faba bean model to simulate the growth and development of <i>Amaranthus</i> species. Agronomy Journal, 0, , .	1.8	1