Luigina Romani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3044821/publications.pdf

Version: 2024-02-01

293 papers 31,527 citations

83 h-index 168 g-index

315 all docs

315 docs citations

315 times ranked

35393 citing authors

#	Article	IF	CITATIONS
1	Crystal structure of (i) Aspergillus fumigatus (i) (scp) AroH (scp), an aromatic amino acid aminotransferase. Proteins: Structure, Function and Bioinformatics, 2022, 90, 435-442.	1.5	2
2	Anakinra restores cellular proteostasis by coupling mitochondrial redox balance to autophagy. Journal of Clinical Investigation, 2022, 132 , .	3.9	7
3	A High-Risk Profile for Invasive Fungal Infections Is Associated with Altered Nasal Microbiota and Niche Determinants. Infection and Immunity, 2022, 90, e0004822.	1.0	6
4	Optimizing therapeutic outcomes of immune checkpoint blockade by a microbial tryptophan metabolite., 2022, 10, e003725.		39
5	Thymosin alpha 1 exerts beneficial extrapulmonary effects in cystic fibrosis. European Journal of Medicinal Chemistry, 2021, 209, 112921.	2.6	3
6	Small Molecule CCR4 Antagonists Protect Mice from Aspergillus Infection and Allergy. Biomolecules, 2021, 11, 351.	1.8	4
7	The Circadian Protein PER1 Modulates the Cellular Response to Anticancer Treatments. International Journal of Molecular Sciences, 2021, 22, 2974.	1.8	10
8	Primary and Memory Response of Human Monocytes to Vaccines: Role of Nanoparticulate Antigens in Inducing Innate Memory. Nanomaterials, 2021, 11, 931.	1.9	5
9	Indole-3-Carboxaldehyde Restores Gut Mucosal Integrity and Protects from Liver Fibrosis in Murine Sclerosing Cholangitis. Cells, 2021, 10, 1622.	1.8	23
10	Anakinra Activates Superoxide Dismutase 2 to Mitigate Inflammasome Activity. International Journal of Molecular Sciences, 2021, 22, 6531.	1.8	15
11	Regulation of host physiology and immunity by microbial indole-3-aldehyde. Current Opinion in Immunology, 2021, 70, 27-32.	2.4	35
12	Targeted Drug Delivery Technologies Potentiate the Overall Therapeutic Efficacy of an Indole Derivative in a Mouse Cystic Fibrosis Setting. Cells, 2021, 10, 1601.	1.8	15
13	Pharyngeal Microbial Signatures Are Predictive of the Risk of Fungal Pneumonia in Hematologic Patients. Infection and Immunity, 2021, 89, e0010521.	1.0	12
14	A Shifted Composition of the Lung Microbiota Conditions the Antifungal Response of Immunodeficient Mice. International Journal of Molecular Sciences, 2021, 22, 8474.	1.8	3
15	<i>In vivo</i> active organometallic-containing antimycotic agents. RSC Chemical Biology, 2021, 2, 1263-1273.	2.0	10
16	Aspergillus fumigatus tryptophan metabolic route differently affects host immunity. Cell Reports, 2021, 34, 108673.	2.9	16
17	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /C	Overlock 1 4.3	0 Tf 50 102 To
18	Defective Glyoxalase 1 Contributes to Pathogenic Inflammation in Cystic Fibrosis. Vaccines, 2021, 9, 1311.	2.1	1

#	Article	IF	CITATIONS
19	Interleukin-17 affects synaptic plasticity and cognition in an experimental model of multiple sclerosis. Cell Reports, 2021, 37, 110094.	2.9	38
20	Could Sars-Cov2 affect MS progression?. Multiple Sclerosis and Related Disorders, 2020, 46, 102540.	0.9	15
21	HOPS/Tmub1 involvement in the NF-kB-mediated inflammatory response through the modulation of TRAF6. Cell Death and Disease, 2020, 11, 865.	2.7	13
22	Modeling Approaches Reveal New Regulatory Networks in Aspergillus fumigatus Metabolism. Journal of Fungi (Basel, Switzerland), 2020, 6, 108.	1.5	2
23	Editorial: Circadian Rhythm: From Microbes to Hosts. Frontiers in Cellular and Infection Microbiology, 2020, 10, 613181.	1.8	0
24	Covid-19-Associated Pulmonary Aspergillosis: The Other Side of the Coin. Vaccines, 2020, 8, 713.	2.1	23
25	Selectively targeting key inflammatory pathways in cystic fibrosis. European Journal of Medicinal Chemistry, 2020, 206, 112717.	2.6	10
26	Rapidly expanded partially HLA DRB1–matched fungus-specific T cells mediate in vitro and in vivo antifungal activity. Blood Advances, 2020, 4, 3443-3456.	2.5	12
27	Pyridoxal 5′-Phosphate-Dependent Enzymes at the Crossroads of Host–Microbe Tryptophan Metabolism. International Journal of Molecular Sciences, 2020, 21, 5823.	1.8	22
28	Epigenetic Mechanisms of Inflammasome Regulation. International Journal of Molecular Sciences, 2020, 21, 5758.	1.8	56
29	The Microbiota/Host Immune System Interaction in the Nose to Protect from COVID-19. Life, 2020, 10, 345.	1.1	27
30	Tryptophan as a Central Hub for Host/Microbial Symbiosis. International Journal of Tryptophan Research, 2020, 13, 117864692091975.	1.0	17
31	Off-label therapy targeting pathogenic inflammation in COVID-19. Cell Death Discovery, 2020, 6, 49.	2.0	19
32	Microbiome-mediated regulation of anti-fungal immunity. Current Opinion in Microbiology, 2020, 58, 8-14.	2.3	6
33	Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 929-946.	2.9	60
34	Host and Microbial Tryptophan Metabolic Profiling in Multiple Sclerosis. Frontiers in Immunology, 2020, 11, 157.	2.2	35
35	Comparative immunophenotyping of Saccharomyces cerevisiae and Candida spp. strains from Crohn's disease patients and their interactions with the gut microbiome. Journal of Translational Autoimmunity, 2020, 3, 100036.	2.0	24
36	Tryptophan Co-Metabolism at the Host-Pathogen Interface. Frontiers in Immunology, 2020, 11, 67.	2.2	21

#	Article	IF	Citations
37	Microbes in the Era of Circadian Medicine. Frontiers in Cellular and Infection Microbiology, 2020, 10, 30.	1.8	21
38	Thymosin $\hat{l}\pm 1$ protects from CTLA-4 intestinal immunopathology. Life Science Alliance, 2020, 3, e202000662.	1.3	15
39	Targeting the Aryl Hydrocarbon Receptor With Indole-3-Aldehyde Protects From Vulvovaginal Candidiasis via the IL-22-IL-18 Cross-Talk. Frontiers in Immunology, 2019, 10, 2364.	2.2	31
40	A Reappraisal of Thymosin Alpha1 in Cancer Therapy. Frontiers in Oncology, 2019, 9, 873.	1.3	36
41	Invasive mould infections in solid organ transplant patients: modifiers and indicators of disease and treatment response. Infection, 2019, 47, 919-927.	2.3	17
42	Genetic Polymorphisms Affecting IDO1 or IDO2 Activity Differently Associate With Aspergillosis in Humans. Frontiers in Immunology, 2019, 10, 890.	2.2	16
43	Autophagy suppresses the pathogenic immune response to dietary antigens in cystic fibrosis. Cell Death and Disease, 2019, 10, 258.	2.7	17
44	Definition of the Anti-inflammatory Oligosaccharides Derived From the Galactosaminogalactan (GAG) From Aspergillus fumigatus. Frontiers in Cellular and Infection Microbiology, 2019, 9, 365.	1.8	18
45	To Be or Not to Be a Pathogen: Candida albicans and Celiac Disease. Frontiers in Immunology, 2019, 10, 2844.	2.2	8
46	A pathogenic role for cystic fibrosis transmembrane conductance regulator in celiac disease. EMBO Journal, 2019, 38, .	3.5	43
47	Intravenous immunoglobulin protects from experimental allergic bronchopulmonary aspergillosis via a sialylationâ€dependent mechanism. European Journal of Immunology, 2019, 49, 195-198.	1.6	23
48	Genistein antagonizes gliadin-induced CFTR malfunction in models of celiac disease. Aging, 2019, 11, 2003-2019.	1.4	8
49	Thymosin \hat{l}^24 promotes autophagy and repair via HIF- $l\hat{l}\pm$ stabilization in chronic granulomatous disease. Life Science Alliance, 2019, 2, e201900432.	1.3	13
50	The contribution of mast cells to bacterial and fungal infection immunity. Immunological Reviews, 2018, 282, 188-197.	2.8	68
51	The Potential Role of Toll-Like Receptor 4 in Mediating Dopaminergic Cell Loss and Alpha-Synuclein Expression in the Acute MPTP Mouse Model of Parkinson's Disease. Journal of Molecular Neuroscience, 2018, 64, 611-618.	1.1	26
52	IL-9 Integrates the Host-Candida Cross-Talk in Vulvovaginal Candidiasis to Balance Inflammation and Tolerance. Frontiers in Immunology, 2018, 9, 2702.	2.2	10
53	Biochemical Characterization of Aspergillus fumigatus AroH, a Putative Aromatic Amino Acid Aminotransferase. Frontiers in Molecular Biosciences, 2018, 5, 104.	1.6	6
54	Role of IL-17RA in the proliferative priming of hepatocytes in liver regeneration. Cell Cycle, 2018, 17, 2423-2435.	1.3	9

#	Article	IF	CITATIONS
55	Mast Cells Respond to Candida albicans Infections and Modulate Macrophages Phagocytosis of the Fungus. Frontiers in Immunology, 2018, 9, 2829.	2.2	21
56	The Mast Cell-Aryl Hydrocarbon Receptor Interplay at the Host-Microbe Interface. Mediators of Inflammation, 2018, 2018, 1-6.	1.4	1
57	IL-9 and Mast Cells Are Key Players of Candida albicans Commensalism and Pathogenesis in the Gut. Cell Reports, 2018, 23, 1767-1778.	2.9	50
58	Reply to â€~F508del-CFTR is not corrected by thymosin α1'. Nature Medicine, 2018, 24, 891-893.	15.2	2
59	Autophagy and LAP in the Fight against Fungal Infections: Regulation and Therapeutics. Mediators of Inflammation, 2018, 2018, 1-7.	1.4	12
60	Towards Targeting the Aryl Hydrocarbon Receptor in Cystic Fibrosis. Mediators of Inflammation, 2018, 2018, 1-7.	1.4	24
61	Thymosin \hat{l}^24 limits inflammation through autophagy. Expert Opinion on Biological Therapy, 2018, 18, 171-175.	1.4	21
62	Cellular proteostasis: a new twist in the action of thymosin $\hat{l}\pm 1$. Expert Opinion on Biological Therapy, 2018, 18, 43-48.	1.4	7
63	Development of Novel Indole-3-Aldehyde–Loaded Gastro-Resistant Spray-Dried Microparticles for Postbiotic Small Intestine Local Delivery. Journal of Pharmaceutical Sciences, 2018, 107, 2341-2353.	1.6	28
64	Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1in juvenile diabetes. JCI Insight, 2018, 3, .	2.3	51
65	A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nature Communications, 2017, 8, 14017.	5 . 8	110
66	Thymosin $\hat{l}\pm 1$ represents a potential potent single-molecule-based therapy for cystic fibrosis. Nature Medicine, 2017, 23, 590-600.	15.2	91
67	Liposomal amphotericin B (AmBisome $\hat{A}^{@}$) at beginning of its third decade of clinical use. Journal of Chemotherapy, 2017, 29, 131-143.	0.7	26
68	Detection of Fusarium-specific T cells in hematologic patients with invasive fusariosis. Journal of Infection, 2017, 74, 314-318.	1.7	7
69	Aspergillus fumigatus morphology and dynamic host interactions. Nature Reviews Microbiology, 2017, 15, 661-674.	13.6	402
70	Disease Tolerance Mediated by Phosphorylated Indoleamine-2,3 Dioxygenase Confers Resistance to a Primary Fungal Pathogen. Frontiers in Immunology, 2017, 8, 1522.	2.2	9
71	A Multifaceted Role of Tryptophan Metabolism and Indoleamine 2,3-Dioxygenase Activity in Aspergillus fumigatus–Host Interactions. Frontiers in Immunology, 2017, 8, 1996.	2.2	44
72	Fungal Chitin Induces Trained Immunity in Human Monocytes during Cross-talk of the Host with Saccharomyces cerevisiae. Journal of Biological Chemistry, 2016, 291, 7961-7972.	1.6	90

#	Article	IF	CITATIONS
73	Identification and Characterization of a Novel Aspergillus fumigatus Rhomboid Family Putative Protease, RbdA, Involved in Hypoxia Sensing and Virulence. Infection and Immunity, 2016, 84, 1866-1878.	1.0	33
74	Noncanonical Fungal Autophagy Inhibits Inflammation in Response to IFN- \hat{l}^3 via DAPK1. Cell Host and Microbe, 2016, 20, 744-757.	5.1	56
75	IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis. Nature Communications, 2016, 7, 10791.	5.8	201
76	The bone marrow represents an enrichment site of specific T lymphocytes against filamentous fungi. Medical Mycology, 2016, 54, 327-332.	0.3	2
77	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
78	Association of a variable number tandem repeat in the NLRP3 gene in women with susceptibility to RVVC. European Journal of Clinical Microbiology and Infectious Diseases, 2016, 35, 797-801.	1.3	51
79	Learning from other diseases: protection and pathology in chronic fungal infections. Seminars in Immunopathology, 2016, 38, 239-248.	2.8	14
80	Mucorales-Specific T Cells in Patients with Hematologic Malignancies. PLoS ONE, 2016, 11, e0149108.	1.1	40
81	Haploidentical hematopoietic transplantation from KIR ligand–mismatched donors with activating KIRs reduces nonrelapse mortality. Blood, 2015, 125, 3173-3182.	0.6	108
82	Thymosin $\hat{l}\pm 1$: burying secrets in the thymus. Expert Opinion on Biological Therapy, 2015, 15, 51-58.	1.4	12
83	Fine-tuning of Th17 Cytokines in Periodontal Disease by IL-10. Journal of Dental Research, 2015, 94, 1267-1275.	2.5	24
84	Pathogenic NLRP3 Inflammasome Activity during Candida Infection Is Negatively Regulated by IL-22 via Activation of NLRC4 and IL-1Ra. Cell Host and Microbe, 2015, 18, 198-209.	5.1	74
85	Soluble Collectin-12 (CL-12) Is a Pattern Recognition Molecule Initiating Complement Activation via the Alternative Pathway. Journal of Immunology, 2015, 195, 3365-3373.	0.4	63
86	BALB/c and C57BL/6 Mice Differ in Polyreactive IgA Abundance, which Impacts the Generation of Antigen-Specific IgA and Microbiota Diversity. Immunity, 2015, 43, 527-540.	6.6	247
87	The cross-talk between opportunistic fungi and the mammalian host via microbiota's metabolism. Seminars in Immunopathology, 2015, 37, 163-171.	2.8	43
88	NEDD4 controls the expression of GUCD1, a protein upregulated in proliferating liver cells. Cell Cycle, 2014, 13, 1902-1911.	1.3	27
89	Genetic PTX3 Deficiency and Aspergillosis in Stem-Cell Transplantation. New England Journal of Medicine, 2014, 370, 421-432.	13.9	265
90	IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3526-3531.	3.3	273

#	Article	IF	Citations
91	Distinct and complementary roles for <i>Aspergillus fumigatus</i> êspecific Tr1 and Foxp3 ⁺ regulatory T cells in humans and mice. Immunology and Cell Biology, 2014, 92, 659-670.	1.0	22
92	IL-37 Inhibits Inflammasome Activation and Disease Severity in Murine Aspergillosis. PLoS Pathogens, 2014, 10, e1004462.	2.1	136
93	Antifungal Th Immunity: Growing up in Family. Frontiers in Immunology, 2014, 5, 506.	2.2	41
94	A Polysaccharide Virulence Factor from Aspergillus fumigatus Elicits Anti-inflammatory Effects through Induction of Interleukin-1 Receptor Antagonist. PLoS Pathogens, 2014, 10, e1003936.	2.1	117
95	AhR: Far more than an environmental sensor. Cell Cycle, 2014, 13, 2645-2646.	1.3	14
96	Tryptophan Feeding of the IDO1-AhR Axis in Hostââ,¬â€œMicrobial Symbiosis. Frontiers in Immunology, 2014, 5, 640.	2.2	68
97	Romani & Puccetti reply. Nature, 2014, 514, E18-E18.	13.7	1
98	Neutrophil Responses to Aspergillosis: New Roles for Old Players. Mycopathologia, 2014, 178, 387-393.	1.3	31
99	PTX3 Binds MD-2 and Promotes TRIF-Dependent Immune Protection in Aspergillosis. Journal of Immunology, 2014, 193, 2340-2348.	0.4	49
100	An immunomodulatory activity of micafungin in preclinical aspergillosis. Journal of Antimicrobial Chemotherapy, 2014, 69, 1065-1074.	1.3	21
101	Microbiota control of a tryptophan–AhR pathway in disease tolerance to fungi. European Journal of Immunology, 2014, 44, 3192-3200.	1.6	78
102	Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature, 2014, 511, 184-190.	13.7	574
103	High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9–TRIF pathway. Nature Communications, 2013, 4, 1852.	5. 8	102
104	Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11079-11084.	3.3	78
105	Tryptophan Catabolites from Microbiota Engage Aryl Hydrocarbon Receptor and Balance Mucosal Reactivity via Interleukin-22. Immunity, 2013, 39, 372-385.	6.6	1,663
106	Minireview: host defence in invasive aspergillosis. Mycoses, 2013, 56, 403-413.	1.8	66
107	Th17/Treg Imbalance in Murine Cystic Fibrosis Is Linked to Indoleamine 2,3-Dioxygenase Deficiency but Corrected by Kynurenines. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 609-620.	2.5	86
108	TLR9 Activation Dampens the Early Inflammatory Response to Paracoccidioides brasiliensis, Impacting Host Survival. PLoS Neglected Tropical Diseases, 2013, 7, e2317.	1.3	18

#	Article	IF	Citations
109	Deletion of the \hat{l} ±- $(1,3)$ -Glucan Synthase Genes Induces a Restructuring of the Conidial Cell Wall Responsible for the Avirulence of Aspergillus fumigatus. PLoS Pathogens, 2013, 9, e1003716.	2.1	110
110	Human Genetic Susceptibility to Invasive Aspergillosis. PLoS Pathogens, 2013, 9, e1003434.	2.1	58
111	IL-22 and IDO1 Affect Immunity and Tolerance to Murine and Human Vaginal Candidiasis. PLoS Pathogens, 2013, 9, e1003486.	2.1	102
112	Ficolin-1–PTX3 Complex Formation Promotes Clearance of Altered Self-Cells and Modulates IL-8 Production. Journal of Immunology, 2013, 191, 1324-1333.	0.4	68
113	Hypoxia Promotes Danger-mediated Inflammation via Receptor for Advanced Glycation End Products in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1338-1350.	2.5	39
114	Characterization of Specific Immune Responses to Different Aspergillus Antigens during the Course of Invasive Aspergillosis in Hematologic Patients. PLoS ONE, 2013, 8, e74326.	1.1	48
115	Strain Dependent Variation of Immune Responses to A. fumigatus: Definition of Pathogenic Species. PLoS ONE, 2013, 8, e56651.	1.1	88
116	Immunity and Tolerance to Fungi in Hematopoietic Transplantation: Principles and Perspectives. Frontiers in Immunology, 2012, 3, 156.	2.2	26
117	Role of Innate Immune Receptors in Paradoxical Caspofungin Activity <i>In Vivo</i> in Preclinical Aspergillosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 4268-4276.	1.4	24
118	DAMP signaling in fungal infections and diseases. Frontiers in Immunology, 2012, 3, 286.	2.2	48
119	A GpC-Rich Oligonucleotide Acts on Plasmacytoid Dendritic Cells To Promote Immune Suppression. Journal of Immunology, 2012, 189, 2283-2289.	0.4	22
120	RT-qPCR detection of Aspergillus fumigatus RNA in vitroand in a murine model of invasive aspergillosis utilizing the PAX gene® and Tempusã, ¢RNA stabilization systems. Medical Mycology, 2012, 50, 661-666.	0.3	6
121	Amphotericin B still in the headlines. Pathogens and Global Health, 2012, 106, 80-81.	1.0	3
122	TLR3 essentially promotes protective class lâ€"restricted memory CD8+ T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood, 2012, 119, 967-977.	0.6	117
123	The rs5743836 polymorphism in TLR9 confers a population-based increased risk of non-Hodgkin lymphoma. Genes and Immunity, 2012, 13, 197-201.	2.2	35
124	Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nature Communications, 2012, 3, 683.	5.8	84
125	Jack of all trades: thymosin $\hat{l}\pm 1$ and its pleiotropy. Annals of the New York Academy of Sciences, 2012, 1269, 1-6.	1.8	40
126	Inflammation in aspergillosis: the good, the bad, and the therapeutic. Annals of the New York Academy of Sciences, 2012, 1273, 52-59.	1.8	19

#	Article	IF	Citations
127	From memory to antifungal vaccine design. Trends in Immunology, 2012, 33, 467-474.	2.9	34
128	The Interaction Pattern of Murine Serum Ficolin-A with Microorganisms. PLoS ONE, 2012, 7, e38196.	1.1	26
129	Host Defense Pathways Against Fungi: The Basis for Vaccines and Immunotherapy. Frontiers in Microbiology, 2012, 3, 176.	1.5	17
130	Dectin-1 isoforms contribute to distinct Th1/Th17 cell activation in mucosal candidiasis. Cellular and Molecular Immunology, 2012, 9, 276-286.	4.8	97
131	Immunotherapy of aspergillosis. Clinical Microbiology and Infection, 2012, 18, 120-125.	2.8	32
132	CD4+ T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. Journal of Clinical Investigation, 2012, 122, 1816-1831.	3.9	71
133	TH17 Cells in Fungal Infections. , 2011, , 299-317.		1
134	Immunity and tolerance to infections in experimental hematopoietic transplantation. Best Practice and Research in Clinical Haematology, 2011, 24, 435-442.	0.7	3
135	Systems biology of infectious diseases: a focus on fungal infections. Immunobiology, 2011, 216, 1212-1227.	0.8	30
136	The Danger Signal S100B Integrates Pathogen– and Danger–Sensing Pathways to Restrain Inflammation. PLoS Pathogens, 2011, 7, e1001315.	2.1	85
137	Cross-protective TH1 immunity against Aspergillus fumigatus and Candida albicans. Blood, 2011, 117, 5881-5891.	0.6	120
138	Immunity to fungal infections. Nature Reviews Immunology, 2011, 11, 275-288.	10.6	1,136
139	Increased ILâ€17A secretion in response to <i>Candida albicans</i> in autoimmune polyendocrine syndrome type 1 and its animal model. European Journal of Immunology, 2011, 41, 235-245.	1.6	41
140	ILâ€⊋2 in antifungal immunity. European Journal of Immunology, 2011, 41, 270-275.	1.6	33
141	Genetic susceptibility to aspergillosis in allogeneic stem-cell transplantation. Medical Mycology, 2011, 49, S137-S143.	0.3	14
142	Immunogenetic Profiling to Predict Risk of Invasive Fungal Diseases: Where Are We Now?. Immunological Investigations, 2011, 40, 723-734.	1.0	14
143	Galactosaminogalactan, a New Immunosuppressive Polysaccharide of Aspergillus fumigatus. PLoS Pathogens, 2011, 7, e1002372.	2.1	185
144	Thymosin Alfa 1 Administration Improves Immune Reconstitution and Decreases Infection-Related Mortality After HLA-Matched Sibling T Cell-Depleted Stem Cell Transplantation. Blood, 2011, 118, 1013-1013.	0.6	1

#	Article	IF	Citations
145	Genetically-Determined Hyperfunction of the S100B/RAGE Axis Is a Risk Factor for Aspergillosis in Stem Cell Transplant Recipients. PLoS ONE, 2011, 6, e27962.	1.1	47
146	The C Allele of rs5743836 Polymorphism in the Human TLR9 Promoter Links IL-6 and TLR9 Up-Regulation and Confers Increased B-Cell Proliferation. PLoS ONE, 2011, 6, e28256.	1.1	37
147	Protective T-Cell Responses to Several Recombinant Aspergillus Antigens May Be Detected Since the Onset of the Infection in Patients with Invasive Aspergillosis, and May Be Exploited for Therapeutic Purposes,. Blood, 2011, 118, 3229-3229.	0.6	0
148	Role of complement and $Fc\hat{l}^3$ receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus. Blood, 2010, 116, 5170-5180.	0.6	188
149	Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood, 2010, 116, 5394-5402.	0.6	259
150	Protection against Pseudomonas aeruginosa lung infection in mice by recombinant OprF-pulsed dendritic cell immunization. BMC Microbiology, 2010, 10, 9.	1.3	32
151	Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO. Cellular and Molecular Immunology, 2010, 7, 459-470.	4.8	62
152	Thymosin $\hat{l}\pm 1$: the regulator of regulators?. Annals of the New York Academy of Sciences, 2010, 1194, 1-5.	1.8	37
153	Thymosin $\hat{l}\pm 1$ to harness immunity to pathogens after haploidentical hematopoietic transplantation. Annals of the New York Academy of Sciences, 2010, 1194, 153-161.	1.8	27
154	NADPH Oxidase Limits Innate Immune Responses in the Lungs in Mice. PLoS ONE, 2010, 5, e9631.	1.1	161
155	Dynamics of extracellular release of Aspergillus fumigatus DNAand galactomannan during growth in blood and serum. Journal of Medical Microbiology, 2010, 59, 408-413.	0.7	38
156	Correction: IDO Mediates Tlr9-Driven Protection From Experimental Autoimmune Diabetes. Journal of Immunology, 2010, 184, 7316-7316.	0.4	0
157	Intranasally delivered siRNA targeting PI3K/Akt/mTOR inflammatory pathways protects from aspergillosis. Mucosal Immunology, 2010, 3, 193-205.	2.7	64
158	Prognostic significance of genetic variants in the IL-23/Th17 pathway for the outcome of T cell-depleted allogeneic stem cell transplantation. Bone Marrow Transplantation, 2010, 45, 1645-1652.	1.3	42
159	Cracking the Toll-like receptor code in fungal infections. Expert Review of Anti-Infective Therapy, 2010, 8, 1121-1137.	2.0	19
160	IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunology, 2010, 3, 361-373.	2.7	247
161	The role of Toll-like receptors and C-type lectins for vaccination against Candida albicans. Vaccine, 2010, 28, 614-622.	1.7	40
162	Genetic variability of innate immunity impacts human susceptibility to fungal diseases. International Journal of Infectious Diseases, 2010, 14, e460-e468.	1.5	44

#	Article	IF	CITATIONS
163	Pathogen-induced Immune Regulation in Transplantation. , 2010, , 257-277.		O
164	Cross-Reactive TH1 Cells to Aspergillus Fumigatus and Candida Albicans. Blood, 2010, 116, 1268-1268.	0.6	0
165	Indoleamine 2,3-dioxygenase (IDO) in inflammation and allergy to <i>Aspergillus</i> . Medical Mycology, 2009, 47, S154-S161.	0.3	21
166	Th17 cells in the setting of <i>Aspergillus </i> i>infection and pathology. Medical Mycology, 2009, 47, S162-S169.	0.3	78
167	Immune Sensing of <i>Aspergillus fumigatus</i> Proteins, Glycolipids, and Polysaccharides and the Impact on Th Immunity and Vaccination. Journal of Immunology, 2009, 183, 2407-2414.	0.4	159
168	Exogenous Pentraxin 3 Restores Antifungal Resistance and Restrains Inflammation in Murine Chronic Granulomatous Disease. Journal of Immunology, 2009, 183, 4609-4618.	0.4	70
169	IDO Mediates TLR9-Driven Protection from Experimental Autoimmune Diabetes. Journal of Immunology, 2009, 183, 6303-6312.	0.4	101
170	Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunology, 2009, 2, 362-374.	2.7	122
171	Polymorphisms in Toll-like receptor genes and susceptibility to infections in allogeneic stem cell transplantation. Experimental Hematology, 2009, 37, 1022-1029.	0.2	96
172	ILâ€17/Th17 in antiâ€fungal immunity: What's new?. European Journal of Immunology, 2009, 39, 645-648.	1.6	93
173	Chronic granulomatous disease. Cellular and Molecular Life Sciences, 2009, 66, 553-558.	2.4	21
174	Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature, 2009, 460, 1117-1121.	13.7	666
175	Indoleamine 2,3-dioxygenase in infection: the paradox of an evasive strategy that benefits the host. Microbes and Infection, 2009, 11, 133-141.	1.0	104
176	Immunology of Aspergillus and Aspergillosis: The Story So Far. , 2009, , 33-52.		0
177	Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature, 2008, 451, 211-215.	13.7	492
178	Parasites and autoimmunity: The case of fungi. Autoimmunity Reviews, 2008, 8, 129-133.	2.5	23
179	Cell mediated immunity to fungi: a reassessment. Medical Mycology, 2008, 46, 515-529.	0.3	71
180	The contribution of PARs to inflammation and immunity to fungi. Mucosal Immunology, 2008, 1, 156-168.	2.7	59

#	Article	IF	Citations
181	Provision of antifungal immunity and concomitant alloantigen tolerization by conditioned dendritic cells in experimental hematopoietic transplantation. Blood Cells, Molecules, and Diseases, 2008, 40, 55-62.	0.6	28
182	Immune Regulation and Tolerance to Fungi in the Lungs and Skin. Chemical Immunology and Allergy, 2008, 94, 124-137.	1.7	20
183	Antiviral Activity of the Long Chain Pentraxin PTX3 against Influenza Viruses. Journal of Immunology, 2008, 180, 3391-3398.	0.4	196
184	IL-17 and Therapeutic Kynurenines in Pathogenic Inflammation to Fungi. Journal of Immunology, 2008, 180, 5157-5162.	0.4	105
185	Lack of Toll IL-1R8 Exacerbates Th17 Cell Responses in Fungal Infection. Journal of Immunology, 2008, 180, 4022-4031.	0.4	102
186	Functional yet Balanced Reactivity to <i>Candida albicans</i> Requires TRIF, MyD88, and IDO-Dependent Inhibition of <i>Rorc</i> . Journal of Immunology, 2007, 179, 5999-6008.	0.4	159
187	Thymosin $\hat{A}1$ activates the TLR9/MyD88/IRF7-dependent murine cytomegalovirus sensing for induction of anti-viral responses in vivo. International Immunology, 2007, 19, 1261-1270.	1.8	49
188	BCG-infected adherent mononuclear cells release cytokines that regulate group 1 CD1 molecule expression. International Immunopharmacology, 2007, 7, 321-332.	1.7	5
189	The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. Journal of Experimental Medicine, 2007, 204, 793-804.	4.2	492
	extracellular traps. Journal of Experimental Medicine, 2007, 204, 775 004.		
190	Immunity to fungi., 2007, , 1-18.		6
190		2.0	6
	Immunity to fungi., 2007, , 1-18. Controlling pathogenic inflammation to fungi. Expert Review of Anti-Infective Therapy, 2007, 5,	2.0	
191	Immunity to fungi., 2007,, 1-18. Controlling pathogenic inflammation to fungi. Expert Review of Anti-Infective Therapy, 2007, 5, 1007-1017. ILâ€23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. European		52
191 192	Immunity to fungi., 2007, , 1-18. Controlling pathogenic inflammation to fungi. Expert Review of Anti-Infective Therapy, 2007, 5, 1007-1017. ILâ€23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. European Journal of Immunology, 2007, 37, 2695-2706. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nature	1.6	52 490
191 192 193	Immunity to fungi., 2007, , 1-18. Controlling pathogenic inflammation to fungi. Expert Review of Anti-Infective Therapy, 2007, 5, 1007-1017. ILâ€23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. European Journal of Immunology, 2007, 37, 2695-2706. Reverse signaling through CITR ligand enables dexamethasone to activate IDO in allergy. Nature Medicine, 2007, 13, 579-586. Thymosin Â1: An Endogenous Regulator of Inflammation, Immunity, and Tolerance. Annals of the New	1.6 15.2	52 490 298
191 192 193	Immunity to fungi., 2007, , 1-18. Controlling pathogenic inflammation to fungi. Expert Review of Anti-Infective Therapy, 2007, 5, 1007-1017. ILâ€23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. European Journal of Immunology, 2007, 37, 2695-2706. Reverse signaling through CITR ligand enables dexamethasone to activate IDO in allergy. Nature Medicine, 2007, 13, 579-586. Thymosin Â1: An Endogenous Regulator of Inflammation, Immunity, and Tolerance. Annals of the New York Academy of Sciences, 2007, 1112, 326-338.	1.6 15.2 1.8	52 490 298 87
191 192 193 194	Immunity to fungi., 2007, , 1-18. Controlling pathogenic inflammation to fungi. Expert Review of Anti-Infective Therapy, 2007, 5, 1007-1017. ILâ€23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. European Journal of Immunology, 2007, 37, 2695-2706. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nature Medicine, 2007, 13, 579-586. Thymosin Â1: An Endogenous Regulator of Inflammation, Immunity, and Tolerance. Annals of the New York Academy of Sciences, 2007, 1112, 326-338. Thymosin Alpha 1. Annals of the New York Academy of Sciences, 2007, 1112, 225-234. Receptors and Pathways in Innate Antifungal Immunity. Advances in Experimental Medicine and Biology,	1.6 15.2 1.8	52 490 298 87 41

#	Article	IF	Citations
199	Thymosin $\hat{l}\pm 1$ activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood, 2006, 108, 2265-2274.	0.6	172
200	Pentraxin 3 protects from MCMV infection and reactivation through TLR sensing pathways leading to IRF3 activation. Blood, 2006, 108, 3387-3396.	0.6	130
201	Candida Albicans Allergenic Extract Induces Toll-like Receptor Expression and Increases Interferon-? Production. Pediatric Dermatology, 2006, 23, 517-518.	0.5	1
202	Manipulating immunity againstAspergillus fumigatus. Medical Mycology, 2006, 44, 237-243.	0.3	3
203	Immunotherapy for Fungal Infections. Clinical Infectious Diseases, 2006, 42, 507-515.	2.9	91
204	The long pentraxin PTX3 as a link among innate immunity, inflammation, and female fertility. Journal of Leukocyte Biology, 2006, 79, 909-912.	1.5	69
205	Immunity and Tolerance to <i>Aspergillus</i> Involve Functionally Distinct Regulatory T Cells and Tryptophan Catabolism. Journal of Immunology, 2006, 176, 1712-1723.	0.4	187
206	Alloreactive Natural Killer Cells Rebuild Adaptive Immunity to Infections after Haploidentical Hematopoietic Transplantation Blood, 2006, 108, 3210-3210.	0.6	3
207	Immunity and tolerance to Aspergillus fumigatus. Novartis Foundation Symposium, 2006, 279, 66-77; discussion 77-9, 216-9.	1.2	15
208	Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood, 2005, 106, 4397-4406.	0.6	343
209	Enhanced tryptophan catabolism in the absence of the molecular adapter DAP12. European Journal of Immunology, 2005, 35, 3111-3118.	1.6	38
210	Innate and Adaptive Immunity to Systemic Candida albicans Infection., 2005,, 377-401.		2
211	A Crucial Role for Tryptophan Catabolism at the Host/ <i>Candida albicans</i> Interface. Journal of Immunology, 2005, 174, 2910-2918.	0.4	129
212	Liposomal amphotericin B activates antifungal resistance with reduced toxicity by diverting Toll-like receptor signalling from TLR-2 to TLR-4. Journal of Antimicrobial Chemotherapy, 2005, 55, 214-222.	1.3	110
213	Immunogenicity and protective effect of recombinant enolase of Candidaalbicansin a murine model of systemic candidiasis. Medical Mycology, 2004, 42, 319-324.	0.3	51
214	Anti- Aspergillus fumigatus Efficacy of Pentraxin 3 Alone and in Combination with Antifungals. Antimicrobial Agents and Chemotherapy, 2004, 48, 4414-4421.	1.4	125
215	The exploitation of distinct recognition receptors in dendritic cells determines the full range of host immune relationships with Candida albicans. International Immunology, 2004, 16, 149-161.	1.8	86
216	TLRs Govern Neutrophil Activity in Aspergillosis. Journal of Immunology, 2004, 173, 7406-7415.	0.4	222

#	Article	IF	CITATIONS
217	The Contribution of the Toll-Like/IL-1 Receptor Superfamily to Innate and Adaptive Immunity to Fungal Pathogens In Vivo. Journal of Immunology, 2004, 172, 3059-3069.	0.4	464
218	Thymosin $\hat{l}\pm 1$ activates dendritic cells for antifungal Th1 resistance through Toll-like receptor signaling. Blood, 2004, 103, 4232-4239.	0.6	189
219	Antifungal Immune Reactivity in Nasal Polyposis. Infection and Immunity, 2004, 72, 7275-7281.	1.0	36
220	CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nature Immunology, 2004, 5, 1134-1142.	7.0	262
221	Immunity to fungal infections. Nature Reviews Immunology, 2004, 4, 11-24.	10.6	678
222	PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development (Cambridge), 2004, 131, 1577-1586.	1.2	385
223	Prospects for dendritic cell vaccination against fungal infections in hematopoietic transplantation. Blood Cells, Molecules, and Diseases, 2004, 33, 248-255.	0.6	38
224	Dendritic cell-based vaccination against opportunistic fungi. Vaccine, 2004, 22, 857-864.	1.7	67
225	The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. European Journal of Immunology, 2003, 33, 532-538.	1.6	336
226	A role for antibodies in the generation of memory antifungal immunity. European Journal of Immunology, 2003, 33, 1193-1204.	1.6	80
227	Production of the soluble pattern recognition receptor PTX3 by myeloid, but not plasmacytoid, dendritic cells. European Journal of Immunology, 2003, 33, 2886-2893.	1.6	173
228	Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts. Current Opinion in Microbiology, 2003, 6, 338-343.	2.3	105
229	Response from Romani et al.: Microbial virulence results from the interaction between host and microorganism. Trends in Microbiology, 2003, 11, 158-159.	3.5	6
230	A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood, 2003, 102, 3807-3814.	0.6	220
231	Protection of Killer Antiidiotypic Antibodies against Early Invasive Aspergillosis in a Murine Model of Allogeneic T-Cell-Depleted Bone Marrow Transplantation. Infection and Immunity, 2002, 70, 2375-2382.	1.0	67
232	Dendritic Cells Pulsed with Fungal RNA Induce Protective Immunity to <i>Candida albicans</i> his Hematopoietic Transplantation. Journal of Immunology, 2002, 168, 2904-2913.	0.4	126
233	B7/CD28-Dependent CD4+CD25+ Regulatory T Cells Are Essential Components of the Memory-Protective Immunity to <i>Candida albicans</i> . Journal of Immunology, 2002, 169, 6298-6308.	0.4	218
234	CD80+Gr-1+ Myeloid Cells Inhibit Development of Antifungal Th1 Immunity in Mice with Candidiasis. Journal of Immunology, 2002, 169, 3180-3190.	0.4	126

#	Article	IF	CITATIONS
235	Dendritic Cells Transport Conidia and Hyphae of <i> Aspergillus fumigatus < /i > from the Airways to the Draining Lymph Nodes and Initiate Disparate Th Responses to the Fungus. Journal of Immunology, 2002, 168, 1362-1371.</i>	0.4	312
236	Fungi, dendritic cells and receptors: a host perspective of fungal virulence. Trends in Microbiology, 2002, 10, 508-514.	3.5	127
237	Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature, 2002, 420, 182-186.	13.7	636
238	Vaccination of mice against invasive aspergillosis with recombinant Aspergillus proteins and CpG oligodeoxynucleotides as adjuvants. Microbes and Infection, 2002, 4, 1281-1290.	1.0	151
239	The Interaction of Fungi with Dendritic Cells: Implications for Th Immunity and Vaccination. Current Molecular Medicine, 2002, 2, 507-524.	0.6	41
240	The Plasticity of Dendritic Cells at the Host/Fungal Interface. Immunobiology, 2001, 204, 582-589.	0.8	4
241	Defective antifungal T-helper 1 (TH1) immunity in a murine model of allogeneic T-cell–depleted bone marrow transplantation and its restoration by treatment with TH2 cytokine antagonists. Blood, 2001, 97, 1483-1490.	0.6	70
242	Postgrafting administration of granulocyte colony-stimulating factor impairs functional immune recovery in recipients of human leukocyte antigen haplotype–mismatched hematopoietic transplants. Blood, 2001, 97, 2514-2521.	0.6	182
243	Impaired Antifungal Effector Activity but Not Inflammatory Cell Recruitment in Interleukinâ€6–Deficient Mice with Invasive Pulmonary Aspergillosis. Journal of Infectious Diseases, 2001, 184, 610-617.	1.9	98
244	T Cell Vaccination in Mice with Invasive Pulmonary Aspergillosis. Journal of Immunology, 2000, 165, 381-388.	0.4	198
245	Host Immune Reactivity Determines the Efficacy of Combination Immunotherapy and Antifungal Chemotherapy in Candidiasis. Journal of Infectious Diseases, 2000, 181, 686-694.	1.9	42
246	Interleukin 18 Restores Defective Th1 Immunity to Candida albicans in Caspase 1-Deficient Mice. Infection and Immunity, 2000, 68, 5126-5131.	1.0	79
247	Dendritic Cells Discriminate between Yeasts and Hyphae of the Fungus Candida albicans. Journal of Experimental Medicine, 2000, 191, 1661-1674.	4.2	473
248	NO-aspirin protects from T cell–mediated liver injury by inhibiting caspase-dependent processing of Th1-like cytokines. Gastroenterology, 2000, 118, 404-421.	0.6	104
249	Interleukinâ€4 Causes Susceptibility to Invasive Pulmonary Aspergillosis through Suppression of Protective Type I Responses. Journal of Infectious Diseases, 1999, 180, 1957-1968.	1.9	185
250	Antifungal type 1 responses are upregulated in IL-10-deficient mice. Microbes and Infection, 1999, 1, $1169-1180$.	1.0	98
251	Immunity to Candida albicans: Th1, Th2 cells and beyond. Current Opinion in Microbiology, 1999, 2, 363-367.	2.3	178
252	Animal Models for Candidiasis. Current Protocols in Immunology, 1999, 30, Unit 19.6.	3.6	3

#	Article	IF	Citations
253	Cytokine modulation of specific and nonspecific immunity to <i>Candida albicans</i> . Mycoses, 1999, 42, 45-48.	1.8	8
254	Cytokine―and T Helper–Dependent Lung Mucosal Immunity in Mice with Invasive Pulmonary Aspergillosis. Journal of Infectious Diseases, 1998, 178, 1750-1760.	1.9	205
255	Endogenous Interleukin 4 Is Required for Development of Protective CD4+ T Helper Type 1 Cell Responses to Candida albicans. Journal of Experimental Medicine, 1998, 187, 307-317.	4.2	153
256	A 70-Kilodalton Recombinant Heat Shock Protein of <i>Candida albicans </i> Is Highly Immunogenic and Enhances Systemic Murine Candidiasis. Infection and Immunity, 1998, 66, 2154-2162.	1.0	76
257	Iron Overload Alters Innate and T Helper Cell Responses to <i>Candida albicans</i> in Mice. Journal of Infectious Diseases, 1997, 175, 1467-1476.	1.9	162
258	Induction of Protective Th1 Responses to <i>Candida albicans</i> by Antifungal Therapy Alone or in Combination with an Interleukinâ€4 Antagonist. Journal of Infectious Diseases, 1997, 176, 217-226.	1.9	68
259	The T cell response against fungal infections. Current Opinion in Immunology, 1997, 9, 484-490.	2.4	85
260	Biological Role of Th Cell Subsets in Candidiasis. Chemical Immunology and Allergy, 1996, 63, 115-137.	1.7	33
261	Interleukin-4 and -10 exacerbate candidiasis in mice. European Journal of Immunology, 1995, 25, 1559-1565.	1.6	124
262	T helper cell dichotomy toCandida albicans: Implications for pathology, therapy, and vaccine design. Immunologic Research, 1995, 14, 148-162.	1.3	29
263	Interleukin-12 but not interferon- \hat{l}^3 production correlates with induction of T helper type-1 phenotype in murine candidiasis. European Journal of Immunology, 1994, 24, 909-915.	1.6	98
264	Untreated or drug-treated tumor cells are differentially recognized by allogeneic lymphocytes. International Journal of Immunopharmacology, 1994, 16, 569-579.	1.1	7
265	Interleukin-4 and interleukin-10 inhibit nitric oxide-dependent macrophage killing of Candida albicans. European Journal of Immunology, 1993, 23, 1034-1038.	1.6	268
266	Low-Dose Streptozotocin-Induced Diabetes in Mice. Cellular Immunology, 1993, 150, 36-44.	1.4	17
267	Course of Primary Candidiasis in T Cell-Depleted Mice Infected with Attenuated Variant Cells. Journal of Infectious Diseases, 1992, 166, 1384-1392.	1.9	54
268	O 6-Methylguanine-DNA methyltransferase activity and induction of novel immunogenicity in murine tumor cells treated with methylating agents. Cancer Chemotherapy and Pharmacology, 1992, 29, 277-282.	1.1	13
269	Drug-induced modulation of IL-2 production in experimental murine trypanosomiasis. International Journal of Immunopharmacology, 1992, 14, 1165-1173.	1.1	2
270	Tumor-specific L3T4+ and Lyt-2+ lymphocytes in mice primed to mutagenized cell variants. International Journal of Immunopharmacology, 1992, 14, 915-921.	1.1	2

#	Article	IF	CITATIONS
271	Involvement of the Th1 subset of CD4+ T cells in acquired immunity to mouse infection with Trypanosoma equiperdum. Cellular Immunology, 1992, 143, 261-271.	1.4	8
272	Intrasplenic immunization for the induction of humoral and cell-mediated immunity to nitrocellulose-bound antigen. Journal of Immunological Methods, 1991, 137, 9-15.	0.6	17
273	Candida albicans-specific Ly-2+ lymphocytes with cytolytic activity. European Journal of Immunology, 1991, 21, 1567-1570.	1.6	22
274	Identification and immunogenic properties of an 80-kDa surface antigen on a drug-treated tumor variant: Relationship to MuLV gp70. European Journal of Immunology, 1990, 20, 629-636.	1.6	25
275	Xenogenization of Experimental Tumors by Triazene Derivatives. , 1990, , 79-89.		3
276	Cell-mediated immunity to chemically xenogenized tumors $\hat{a} \in \mathbb{C}$ IV. Production of lymphokine activity by, and in response to, highly immunogenic cells. International Journal of Immunopharmacology, 1989, 11, 537-542.	1.1	7
277	Lack of correlation between DNA-methylating activity and appearance of the immunogenic phenotype in clones of a murine lymphoma treated with mutagens. Cancer Immunology, Immunotherapy, 1989, 29, 139-43.	2.0	10
278	Cell-mediated immunity to chemically xenogenized tumors I. Inhibition by specific antisera and H-2 association of the novel antigens. Cancer Immunology, Immunotherapy, 1988, 26, 48-54.	2.0	16
279	Cell-mediated immunity to chemically xenogenized tumorsâ€"III. Generation of monoclonal antibodies interfering with reactivity to novel antigens. International Journal of Immunopharmacology, 1988, 10, 803-809.	1.1	12
280	Cell-mediated immunity to chemically xenogenized tumors. Cellular Immunology, 1988, 111, 365-378.	1.4	15
281	Chemical xenogenization of experimental tumors. Cancer and Metastasis Reviews, 1987, 6, 93-111.	2.7	43
282	Search for class II major histocompatibility complex molecular involvement in the response of Lyt-2+cytotoxic T lymphocyte precursors to alloantigen. European Journal of Immunology, 1985, 15, 1125-1130.	1.6	6
283	Chemical xenogenization of tumor cells. Trends in Pharmacological Sciences, 1985, 6, 485-487.	4.0	15
284	Susceptibility of murine lymphoma cells treated with 5-(3,3-dimethyl-1-triazenyl)-1H-imidazole-4-carboxamide to NK-mediated cytotoxicity in vitro. International Journal of Immunopharmacology, 1983, 5, 299-306.	1.1	2
285	Production of the Long Pentraxin PTX3 by Myeloid Dendritic Cells: Linking Cellular and Humoral Innate Immunity. , 0 , , $165-174$.		O
286	Immunity and tolerance to Aspergillus fumigatus. Novartis Foundation Symposium, 0, , 66-79.	1.2	24
287	Innate and Acquired Cellular Immunity to Fungi. , 0, , 471-486.		4
288	Overview of the Fungal Pathogens. , 0, , 25-37.		4

#	Article	IF	CITATIONS
289	Cytokines of Innate and Adaptive Immunity to Candida albicans. , 0, , 227-241.		6
290	Immunology of Invasive Candidiasis. , 0, , 125-136.		2
291	Dendritic Cells in <i>Aspergillus</i> Infection and Allergy. , 0, , 247-261.		0
292	Acquired Immunity: Fungal Infections. , 0, , 289-299.		0
293	IL-9 and Mast Cells Are Key Players of Candida Albicans Commensalism and Pathogenesis in the Gut. SSRN Electronic Journal, 0, , .	0.4	0