List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3044821/publications.pdf Version: 2024-02-01

		5268	4774
293	31,527	83	169
papers	citations	h-index	g-index
315	315	315	35393
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Tryptophan Catabolites from Microbiota Engage Aryl Hydrocarbon Receptor and Balance Mucosal Reactivity via Interleukin-22. Immunity, 2013, 39, 372-385.	14.3	1,663
3	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /O	verlock 10 9.1) Tf 50 662 1,430
4	Immunity to fungal infections. Nature Reviews Immunology, 2011, 11, 275-288.	22.7	1,136
5	Immunity to fungal infections. Nature Reviews Immunology, 2004, 4, 11-24.	22.7	678
6	Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature, 2009, 460, 1117-1121.	27.8	666
7	Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature, 2002, 420, 182-186.	27.8	636
8	Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature, 2014, 511, 184-190.	27.8	574
9	The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. Journal of Experimental Medicine, 2007, 204, 793-804.	8.5	492
10	Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature, 2008, 451, 211-215.	27.8	492
11	ILâ€⊋3 and the Th17 pathway promote inflammation and impair antifungal immune resistance. European Journal of Immunology, 2007, 37, 2695-2706.	2.9	490
12	Dendritic Cells Discriminate between Yeasts and Hyphae of the Fungus <i>Candida albicans</i> . Journal of Experimental Medicine, 2000, 191, 1661-1674.	8.5	473
13	The Contribution of the Toll-Like/IL-1 Receptor Superfamily to Innate and Adaptive Immunity to Fungal Pathogens In Vivo. Journal of Immunology, 2004, 172, 3059-3069.	0.8	464
14	Aspergillus fumigatus morphology and dynamic host interactions. Nature Reviews Microbiology, 2017, 15, 661-674.	28.6	402
15	PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development (Cambridge), 2004, 131, 1577-1586.	2.5	385
16	Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood, 2005, 106, 4397-4406.	1.4	343
17	The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. European Journal of Immunology, 2003, 33, 532-538.	2.9	336
18	Dendritic Cells Transport Conidia and Hyphae of <i>Aspergillus fumigatus</i> from the Airways to the Draining Lymph Nodes and Initiate Disparate Th Responses to the Fungus. Journal of Immunology, 2002, 168, 1362-1371.	0.8	312

#	Article	IF	CITATIONS
19	Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nature Medicine, 2007, 13, 579-586.	30.7	298
20	IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3526-3531.	7.1	273
21	Interleukin-4 and interleukin-10 inhibit nitric oxide-dependent macrophage killing ofCandida albicans. European Journal of Immunology, 1993, 23, 1034-1038.	2.9	268
22	Genetic PTX3 Deficiency and Aspergillosis in Stem-Cell Transplantation. New England Journal of Medicine, 2014, 370, 421-432.	27.0	265
23	CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nature Immunology, 2004, 5, 1134-1142.	14.5	262
24	Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood, 2010, 116, 5394-5402.	1.4	259
25	IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunology, 2010, 3, 361-373.	6.0	247
26	BALB/c and C57BL/6 Mice Differ in Polyreactive IgA Abundance, which Impacts the Generation of Antigen-Specific IgA and Microbiota Diversity. Immunity, 2015, 43, 527-540.	14.3	247
27	TLRs Govern Neutrophil Activity in Aspergillosis. Journal of Immunology, 2004, 173, 7406-7415.	0.8	222
28	A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood, 2003, 102, 3807-3814.	1.4	220
29	B7/CD28-Dependent CD4+CD25+ Regulatory T Cells Are Essential Components of the Memory-Protective Immunity to <i>Candida albicans</i> . Journal of Immunology, 2002, 169, 6298-6308.	0.8	218
30	Cytokine―and T Helper–Dependent Lung Mucosal Immunity in Mice with Invasive Pulmonary Aspergillosis. Journal of Infectious Diseases, 1998, 178, 1750-1760.	4.0	205
31	IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis. Nature Communications, 2016, 7, 10791.	12.8	201
32	T Cell Vaccination in Mice with Invasive Pulmonary Aspergillosis. Journal of Immunology, 2000, 165, 381-388.	0.8	198
33	Antiviral Activity of the Long Chain Pentraxin PTX3 against Influenza Viruses. Journal of Immunology, 2008, 180, 3391-3398.	0.8	196
34	Thymosin $\hat{I}\pm1$ activates dendritic cells for antifungal Th1 resistance through Toll-like receptor signaling. Blood, 2004, 103, 4232-4239.	1.4	189
35	Role of complement and FcÎ ³ receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus. Blood, 2010, 116, 5170-5180.	1.4	188
36	Immunity and Tolerance to <i>Aspergillus</i> Involve Functionally Distinct Regulatory T Cells and Tryptophan Catabolism. Journal of Immunology, 2006, 176, 1712-1723.	0.8	187

#	Article	IF	CITATIONS
37	Interleukinâ€4 Causes Susceptibility to Invasive Pulmonary Aspergillosis through Suppression of Protective Type I Responses. Journal of Infectious Diseases, 1999, 180, 1957-1968.	4.0	185
38	Galactosaminogalactan, a New Immunosuppressive Polysaccharide of Aspergillus fumigatus. PLoS Pathogens, 2011, 7, e1002372.	4.7	185
39	Postgrafting administration of granulocyte colony-stimulating factor impairs functional immune recovery in recipients of human leukocyte antigen haplotype–mismatched hematopoietic transplants. Blood, 2001, 97, 2514-2521.	1.4	182
40	Immunity to Candida albicans: Th1, Th2 cells and beyond. Current Opinion in Microbiology, 1999, 2, 363-367.	5.1	178
41	Production of the soluble pattern recognition receptor PTX3 by myeloid, but not plasmacytoid, dendritic cells. European Journal of Immunology, 2003, 33, 2886-2893.	2.9	173
42	Thymosin $\hat{l}\pm 1$ activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood, 2006, 108, 2265-2274.	1.4	172
43	Iron Overload Alters Innate and T Helper Cell Responses to <i>Candida albicans</i> in Mice. Journal of Infectious Diseases, 1997, 175, 1467-1476.	4.0	162
44	NADPH Oxidase Limits Innate Immune Responses in the Lungs in Mice. PLoS ONE, 2010, 5, e9631.	2.5	161
45	Functional yet Balanced Reactivity to <i>Candida albicans</i> Requires TRIF, MyD88, and IDO-Dependent Inhibition of <i>Rorc</i> . Journal of Immunology, 2007, 179, 5999-6008.	0.8	159
46	Immune Sensing of <i>Aspergillus fumigatus</i> Proteins, Glycolipids, and Polysaccharides and the Impact on Th Immunity and Vaccination. Journal of Immunology, 2009, 183, 2407-2414.	0.8	159
47	Endogenous Interleukin 4 Is Required for Development of Protective CD4+ T Helper Type 1 Cell Responses to Candida albicans. Journal of Experimental Medicine, 1998, 187, 307-317.	8.5	153
48	Vaccination of mice against invasive aspergillosis with recombinant Aspergillus proteins and CpG oligodeoxynucleotides as adjuvants. Microbes and Infection, 2002, 4, 1281-1290.	1.9	151
49	IL-37 Inhibits Inflammasome Activation and Disease Severity in Murine Aspergillosis. PLoS Pathogens, 2014, 10, e1004462.	4.7	136
50	Pentraxin 3 protects from MCMV infection and reactivation through TLR sensing pathways leading to IRF3 activation. Blood, 2006, 108, 3387-3396.	1.4	130
51	A Crucial Role for Tryptophan Catabolism at the Host/ <i>Candida albicans</i> Interface. Journal of Immunology, 2005, 174, 2910-2918.	0.8	129
52	Fungi, dendritic cells and receptors: a host perspective of fungal virulence. Trends in Microbiology, 2002, 10, 508-514.	7.7	127
53	Dendritic Cells Pulsed with Fungal RNA Induce Protective Immunity to <i>Candida albicans</i> in Hematopoietic Transplantation. Journal of Immunology, 2002, 168, 2904-2913.	0.8	126
54	CD80+Gr-1+ Myeloid Cells Inhibit Development of Antifungal Th1 Immunity in Mice with Candidiasis. Journal of Immunology, 2002, 169, 3180-3190.	0.8	126

#	Article	IF	CITATIONS
55	Anti- Aspergillus fumigatus Efficacy of Pentraxin 3 Alone and in Combination with Antifungals. Antimicrobial Agents and Chemotherapy, 2004, 48, 4414-4421.	3.2	125
56	Interleukin-4 and -10 exacerbate candidiasis in mice. European Journal of Immunology, 1995, 25, 1559-1565.	2.9	124
57	Protective tolerance to fungi: the role of IL-10 and tryptophan catabolism. Trends in Microbiology, 2006, 14, 183-189.	7.7	124
58	Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunology, 2009, 2, 362-374.	6.0	122
59	Cross-protective TH1 immunity against Aspergillus fumigatus and Candida albicans. Blood, 2011, 117, 5881-5891.	1.4	120
60	TLR3 essentially promotes protective class l–restricted memory CD8+ T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood, 2012, 119, 967-977.	1.4	117
61	A Polysaccharide Virulence Factor from Aspergillus fumigatus Elicits Anti-inflammatory Effects through Induction of Interleukin-1 Receptor Antagonist. PLoS Pathogens, 2014, 10, e1003936.	4.7	117
62	Liposomal amphotericin B activates antifungal resistance with reduced toxicity by diverting Toll-like receptor signalling from TLR-2 to TLR-4. Journal of Antimicrobial Chemotherapy, 2005, 55, 214-222.	3.0	110
63	Deletion of the α-(1,3)-Glucan Synthase Genes Induces a Restructuring of the Conidial Cell Wall Responsible for the Avirulence of Aspergillus fumigatus. PLoS Pathogens, 2013, 9, e1003716.	4.7	110
64	A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nature Communications, 2017, 8, 14017.	12.8	110
65	Haploidentical hematopoietic transplantation from KIR ligand–mismatched donors with activating KIRs reduces nonrelapse mortality. Blood, 2015, 125, 3173-3182.	1.4	108
66	Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts. Current Opinion in Microbiology, 2003, 6, 338-343.	5.1	105
67	IL-17 and Therapeutic Kynurenines in Pathogenic Inflammation to Fungi. Journal of Immunology, 2008, 180, 5157-5162.	0.8	105
68	NO-aspirin protects from T cell–mediated liver injury by inhibiting caspase-dependent processing of Th1-like cytokines. Gastroenterology, 2000, 118, 404-421.	1.3	104
69	Indoleamine 2,3-dioxygenase in infection: the paradox of an evasive strategy that benefits the host. Microbes and Infection, 2009, 11, 133-141.	1.9	104
70	Lack of Toll IL-1R8 Exacerbates Th17 Cell Responses in Fungal Infection. Journal of Immunology, 2008, 180, 4022-4031.	0.8	102
71	High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9–TRIF pathway. Nature Communications, 2013, 4, 1852.	12.8	102
72	IL-22 and IDO1 Affect Immunity and Tolerance to Murine and Human Vaginal Candidiasis. PLoS Pathogens, 2013, 9, e1003486.	4.7	102

#	Article	IF	CITATIONS
73	IDO Mediates TLR9-Driven Protection from Experimental Autoimmune Diabetes. Journal of Immunology, 2009, 183, 6303-6312.	0.8	101
74	Interleukin-12 but not interferon-Î ³ production correlates with induction of T helper type-1 phenotype in murine candidiasis. European Journal of Immunology, 1994, 24, 909-915.	2.9	98
75	Antifungal type 1 responses are upregulated in IL-10-deficient mice. Microbes and Infection, 1999, 1, 1169-1180.	1.9	98
76	Impaired Antifungal Effector Activity but Not Inflammatory Cell Recruitment in Interleukinâ€6–Deficient Mice with Invasive Pulmonary Aspergillosis. Journal of Infectious Diseases, 2001, 184, 610-617.	4.0	98
77	Dectin-1 isoforms contribute to distinct Th1/Th17 cell activation in mucosal candidiasis. Cellular and Molecular Immunology, 2012, 9, 276-286.	10.5	97
78	Polymorphisms in Toll-like receptor genes and susceptibility to infections in allogeneic stem cell transplantation. Experimental Hematology, 2009, 37, 1022-1029.	0.4	96
79	ILâ€17/Th17 in antiâ€fungal immunity: What's new?. European Journal of Immunology, 2009, 39, 645-648.	2.9	93
80	Immunotherapy for Fungal Infections. Clinical Infectious Diseases, 2006, 42, 507-515.	5.8	91
81	Thymosin α1 represents a potential potent single-molecule-based therapy for cystic fibrosis. Nature Medicine, 2017, 23, 590-600.	30.7	91
82	Fungal Chitin Induces Trained Immunity in Human Monocytes during Cross-talk of the Host with Saccharomyces cerevisiae. Journal of Biological Chemistry, 2016, 291, 7961-7972.	3.4	90
83	Strain Dependent Variation of Immune Responses to A. fumigatus: Definition of Pathogenic Species. PLoS ONE, 2013, 8, e56651.	2.5	88
84	Thymosin Â1: An Endogenous Regulator of Inflammation, Immunity, and Tolerance. Annals of the New York Academy of Sciences, 2007, 1112, 326-338.	3.8	87
85	The exploitation of distinct recognition receptors in dendritic cells determines the full range of host immune relationships with Candida albicans. International Immunology, 2004, 16, 149-161.	4.0	86
86	Th17/Treg Imbalance in Murine Cystic Fibrosis Is Linked to Indoleamine 2,3-Dioxygenase Deficiency but Corrected by Kynurenines. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 609-620.	5.6	86
87	The T cell response against fungal infections. Current Opinion in Immunology, 1997, 9, 484-490.	5.5	85
88	The Danger Signal S100B Integrates Pathogen– and Danger–Sensing Pathways to Restrain Inflammation. PLoS Pathogens, 2011, 7, e1001315.	4.7	85
89	Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nature Communications, 2012, 3, 683.	12.8	84
90	A role for antibodies in the generation of memory antifungal immunity. European Journal of Immunology, 2003, 33, 1193-1204.	2.9	80

#	Article	IF	CITATIONS
91	Interleukin 18 Restores Defective Th1 Immunity to Candida albicans in Caspase 1-Deficient Mice. Infection and Immunity, 2000, 68, 5126-5131.	2.2	79
92	Th17 cells in the setting of <i>Aspergillus</i> infection and pathology. Medical Mycology, 2009, 47, S162-S169.	0.7	78
93	Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11079-11084.	7.1	78
94	Microbiota control of a tryptophan–AhR pathway in disease tolerance to fungi. European Journal of Immunology, 2014, 44, 3192-3200.	2.9	78
95	A 70-Kilodalton Recombinant Heat Shock Protein of <i>Candida albicans</i> Is Highly Immunogenic and Enhances Systemic Murine Candidiasis. Infection and Immunity, 1998, 66, 2154-2162.	2.2	76
96	Pathogenic NLRP3 Inflammasome Activity during Candida Infection Is Negatively Regulated by IL-22 via Activation of NLRC4 and IL-1Ra. Cell Host and Microbe, 2015, 18, 198-209.	11.0	74
97	Cell mediated immunity to fungi: a reassessment. Medical Mycology, 2008, 46, 515-529.	0.7	71
98	CD4+ T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. Journal of Clinical Investigation, 2012, 122, 1816-1831.	8.2	71
99	Defective antifungal T-helper 1 (TH1) immunity in a murine model of allogeneic T-cell–depleted bone marrow transplantation and its restoration by treatment with TH2 cytokine antagonists. Blood, 2001, 97, 1483-1490.	1.4	70
100	Exogenous Pentraxin 3 Restores Antifungal Resistance and Restrains Inflammation in Murine Chronic Granulomatous Disease. Journal of Immunology, 2009, 183, 4609-4618.	0.8	70
101	The long pentraxin PTX3 as a link among innate immunity, inflammation, and female fertility. Journal of Leukocyte Biology, 2006, 79, 909-912.	3.3	69
102	Induction of Protective Th1 Responses to <i>Candida albicans</i> by Antifungal Therapy Alone or in Combination with an Interleukinâ€4 Antagonist. Journal of Infectious Diseases, 1997, 176, 217-226.	4.0	68
103	Ficolin-1–PTX3 Complex Formation Promotes Clearance of Altered Self-Cells and Modulates IL-8 Production. Journal of Immunology, 2013, 191, 1324-1333.	0.8	68
104	Tryptophan Feeding of the IDO1-AhR Axis in Hostââ,¬â€œMicrobial Symbiosis. Frontiers in Immunology, 2014, 5, 640.	4.8	68
105	The contribution of mast cells to bacterial and fungal infection immunity. Immunological Reviews, 2018, 282, 188-197.	6.0	68
106	Protection of Killer Antiidiotypic Antibodies against Early Invasive Aspergillosis in a Murine Model of Allogeneic T-Cell-Depleted Bone Marrow Transplantation. Infection and Immunity, 2002, 70, 2375-2382.	2.2	67
107	Dendritic cell-based vaccination against opportunistic fungi. Vaccine, 2004, 22, 857-864.	3.8	67
108	Minireview: host defence in invasive aspergillosis. Mycoses, 2013, 56, 403-413.	4.0	66

#	Article	IF	CITATIONS
109	Intranasally delivered siRNA targeting PI3K/Akt/mTOR inflammatory pathways protects from aspergillosis. Mucosal Immunology, 2010, 3, 193-205.	6.0	64
110	Soluble Collectin-12 (CL-12) Is a Pattern Recognition Molecule Initiating Complement Activation via the Alternative Pathway. Journal of Immunology, 2015, 195, 3365-3373.	0.8	63
111	Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO. Cellular and Molecular Immunology, 2010, 7, 459-470.	10.5	62
112	Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 929-946.	7.3	60
113	The contribution of PARs to inflammation and immunity to fungi. Mucosal Immunology, 2008, 1, 156-168.	6.0	59
114	Human Genetic Susceptibility to Invasive Aspergillosis. PLoS Pathogens, 2013, 9, e1003434.	4.7	58
115	Noncanonical Fungal Autophagy Inhibits Inflammation in Response to IFN-γ via DAPK1. Cell Host and Microbe, 2016, 20, 744-757.	11.0	56
116	Epigenetic Mechanisms of Inflammasome Regulation. International Journal of Molecular Sciences, 2020, 21, 5758.	4.1	56
117	Course of Primary Candidiasis in T Cell-Depleted Mice Infected with Attenuated Variant Cells. Journal of Infectious Diseases, 1992, 166, 1384-1392.	4.0	54
118	Controlling pathogenic inflammation to fungi. Expert Review of Anti-Infective Therapy, 2007, 5, 1007-1017.	4.4	52
119	Immunogenicity and protective effect of recombinant enolase ofCandidaalbicansin a murine model of systemic candidiasis. Medical Mycology, 2004, 42, 319-324.	0.7	51
120	Association of a variable number tandem repeat in the NLRP3 gene in women with susceptibility to RVVC. European Journal of Clinical Microbiology and Infectious Diseases, 2016, 35, 797-801.	2.9	51
121	Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1in juvenile diabetes. JCI Insight, 2018, 3, .	5.0	51
122	IL-9 and Mast Cells Are Key Players of Candida albicans Commensalism and Pathogenesis in the Gut. Cell Reports, 2018, 23, 1767-1778.	6.4	50
123	Thymosin Â1 activates the TLR9/MyD88/IRF7-dependent murine cytomegalovirus sensing for induction of anti-viral responses in vivo. International Immunology, 2007, 19, 1261-1270.	4.0	49
124	PTX3 Binds MD-2 and Promotes TRIF-Dependent Immune Protection in Aspergillosis. Journal of Immunology, 2014, 193, 2340-2348.	0.8	49
125	DAMP signaling in fungal infections and diseases. Frontiers in Immunology, 2012, 3, 286.	4.8	48
126	Characterization of Specific Immune Responses to Different Aspergillus Antigens during the Course of Invasive Aspergillosis in Hematologic Patients. PLoS ONE, 2013, 8, e74326.	2.5	48

#	Article	IF	CITATIONS
127	Genetically-Determined Hyperfunction of the S100B/RAGE Axis Is a Risk Factor for Aspergillosis in Stem Cell Transplant Recipients. PLoS ONE, 2011, 6, e27962.	2.5	47
128	Genetic variability of innate immunity impacts human susceptibility to fungal diseases. International Journal of Infectious Diseases, 2010, 14, e460-e468.	3.3	44
129	A Multifaceted Role of Tryptophan Metabolism and Indoleamine 2,3-Dioxygenase Activity in Aspergillus fumigatus–Host Interactions. Frontiers in Immunology, 2017, 8, 1996.	4.8	44
130	Chemical xenogenization of experimental tumors. Cancer and Metastasis Reviews, 1987, 6, 93-111.	5.9	43
131	The cross-talk between opportunistic fungi and the mammalian host via microbiota's metabolism. Seminars in Immunopathology, 2015, 37, 163-171.	6.1	43
132	A pathogenic role for cystic fibrosis transmembrane conductance regulator in celiac disease. EMBO Journal, 2019, 38, .	7.8	43
133	Host Immune Reactivity Determines the Efficacy of Combination Immunotherapy and Antifungal Chemotherapy in Candidiasis. Journal of Infectious Diseases, 2000, 181, 686-694.	4.0	42
134	Prognostic significance of genetic variants in the IL-23/Th17 pathway for the outcome of T cell-depleted allogeneic stem cell transplantation. Bone Marrow Transplantation, 2010, 45, 1645-1652.	2.4	42
135	Thymosin Alpha 1. Annals of the New York Academy of Sciences, 2007, 1112, 225-234.	3.8	41
136	Increased ILâ€17A secretion in response to <i>Candida albicans</i> in autoimmune polyendocrine syndrome type 1 and its animal model. European Journal of Immunology, 2011, 41, 235-245.	2.9	41
137	Antifungal Th Immunity: Growing up in Family. Frontiers in Immunology, 2014, 5, 506.	4.8	41
138	The Interaction of Fungi with Dendritic Cells: Implications for Th Immunity and Vaccination. Current Molecular Medicine, 2002, 2, 507-524.	1.3	41
139	The role of Toll-like receptors and C-type lectins for vaccination against Candida albicans. Vaccine, 2010, 28, 614-622.	3.8	40
140	Jack of all trades: thymosin $\hat{l}\pm 1$ and its pleiotropy. Annals of the New York Academy of Sciences, 2012, 1269, 1-6.	3.8	40
141	Mucorales-Specific T Cells in Patients with Hematologic Malignancies. PLoS ONE, 2016, 11, e0149108.	2.5	40
142	Hypoxia Promotes Danger-mediated Inflammation via Receptor for Advanced Glycation End Products in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1338-1350.	5.6	39
143	Optimizing therapeutic outcomes of immune checkpoint blockade by a microbial tryptophan metabolite. , 2022, 10, e003725.		39
144	Prospects for dendritic cell vaccination against fungal infections in hematopoietic transplantation. Blood Cells, Molecules, and Diseases, 2004, 33, 248-255.	1.4	38

#	Article	IF	CITATIONS
145	Enhanced tryptophan catabolism in the absence of the molecular adapter DAP12. European Journal of Immunology, 2005, 35, 3111-3118.	2.9	38
146	Dynamics of extracellular release of Aspergillus fumigatus DNAand galactomannan during growth in blood and serum. Journal of Medical Microbiology, 2010, 59, 408-413.	1.8	38
147	Interleukin-17 affects synaptic plasticity and cognition in an experimental model of multiple sclerosis. Cell Reports, 2021, 37, 110094.	6.4	38
148	Thymosin $\hat{I}\pm 1$: the regulator of regulators?. Annals of the New York Academy of Sciences, 2010, 1194, 1-5.	3.8	37
149	The C Allele of rs5743836 Polymorphism in the Human TLR9 Promoter Links IL-6 and TLR9 Up-Regulation and Confers Increased B-Cell Proliferation. PLoS ONE, 2011, 6, e28256.	2.5	37
150	Antifungal Immune Reactivity in Nasal Polyposis. Infection and Immunity, 2004, 72, 7275-7281.	2.2	36
151	A Reappraisal of Thymosin Alpha1 in Cancer Therapy. Frontiers in Oncology, 2019, 9, 873.	2.8	36
152	The rs5743836 polymorphism in TLR9 confers a population-based increased risk of non-Hodgkin lymphoma. Genes and Immunity, 2012, 13, 197-201.	4.1	35
153	Host and Microbial Tryptophan Metabolic Profiling in Multiple Sclerosis. Frontiers in Immunology, 2020, 11, 157.	4.8	35
154	Regulation of host physiology and immunity by microbial indole-3-aldehyde. Current Opinion in Immunology, 2021, 70, 27-32.	5.5	35
155	From memory to antifungal vaccine design. Trends in Immunology, 2012, 33, 467-474.	6.8	34
156	Biological Role of Th Cell Subsets in Candidiasis. Chemical Immunology and Allergy, 1996, 63, 115-137.	1.7	33
157	ILâ€22 in antifungal immunity. European Journal of Immunology, 2011, 41, 270-275.	2.9	33
158	Identification and Characterization of a Novel Aspergillus fumigatus Rhomboid Family Putative Protease, RbdA, Involved in Hypoxia Sensing and Virulence. Infection and Immunity, 2016, 84, 1866-1878.	2.2	33
159	Protection against Pseudomonas aeruginosa lung infection in mice by recombinant OprF-pulsed dendritic cell immunization. BMC Microbiology, 2010, 10, 9.	3.3	32
160	Immunotherapy of aspergillosis. Clinical Microbiology and Infection, 2012, 18, 120-125.	6.0	32
161	Neutrophil Responses to Aspergillosis: New Roles for Old Players. Mycopathologia, 2014, 178, 387-393.	3.1	31
162	Targeting the Aryl Hydrocarbon Receptor With Indole-3-Aldehyde Protects From Vulvovaginal Candidiasis via the IL-22-IL-18 Cross-Talk. Frontiers in Immunology, 2019, 10, 2364.	4.8	31

#	Article	IF	CITATIONS
163	Systems biology of infectious diseases: a focus on fungal infections. Immunobiology, 2011, 216, 1212-1227.	1.9	30
164	T helper cell dichotomy toCandida albicans: Implications for pathology, therapy, and vaccine design. Immunologic Research, 1995, 14, 148-162.	2.9	29
165	Provision of antifungal immunity and concomitant alloantigen tolerization by conditioned dendritic cells in experimental hematopoietic transplantation. Blood Cells, Molecules, and Diseases, 2008, 40, 55-62.	1.4	28
166	Development of Novel Indole-3-Aldehyde–Loaded Gastro-Resistant Spray-Dried Microparticles for Postbiotic Small Intestine Local Delivery. Journal of Pharmaceutical Sciences, 2018, 107, 2341-2353.	3.3	28
167	Thymosin α1 to harness immunity to pathogens after haploidentical hematopoietic transplantation. Annals of the New York Academy of Sciences, 2010, 1194, 153-161.	3.8	27
168	NEDD4 controls the expression of GUCD1, a protein upregulated in proliferating liver cells. Cell Cycle, 2014, 13, 1902-1911.	2.6	27
169	The Microbiota/Host Immune System Interaction in the Nose to Protect from COVID-19. Life, 2020, 10, 345.	2.4	27
170	Immunity and Tolerance to Fungi in Hematopoietic Transplantation: Principles and Perspectives. Frontiers in Immunology, 2012, 3, 156.	4.8	26
171	The Interaction Pattern of Murine Serum Ficolin-A with Microorganisms. PLoS ONE, 2012, 7, e38196.	2.5	26
172	Liposomal amphotericin B (AmBisome®) at beginning of its third decade of clinical use. Journal of Chemotherapy, 2017, 29, 131-143.	1.5	26
173	The Potential Role of Toll-Like Receptor 4 in Mediating Dopaminergic Cell Loss and Alpha-Synuclein Expression in the Acute MPTP Mouse Model of Parkinson's Disease. Journal of Molecular Neuroscience, 2018, 64, 611-618.	2.3	26
174	Identification and immunogenic properties of an 80-kDa surface antigen on a drug-treated tumor variant: Relationship to MuLV gp70. European Journal of Immunology, 1990, 20, 629-636.	2.9	25
175	Role of Innate Immune Receptors in Paradoxical Caspofungin Activity <i>In Vivo</i> in Preclinical Aspergillosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 4268-4276.	3.2	24
176	Fine-tuning of Th17 Cytokines in Periodontal Disease by IL-10. Journal of Dental Research, 2015, 94, 1267-1275.	5.2	24
177	Towards Targeting the Aryl Hydrocarbon Receptor in Cystic Fibrosis. Mediators of Inflammation, 2018, 2018, 1-7.	3.0	24
178	Comparative immunophenotyping of Saccharomyces cerevisiae and Candida spp. strains from Crohn's disease patients and their interactions with the gut microbiome. Journal of Translational Autoimmunity, 2020, 3, 100036.	4.0	24
179	Immunity and tolerance to Aspergillus fumigatus. Novartis Foundation Symposium, 0, , 66-79.	1.1	24
180	Parasites and autoimmunity: The case of fungi. Autoimmunity Reviews, 2008, 8, 129-133.	5.8	23

#	Article	IF	CITATIONS
181	Intravenous immunoglobulin protects from experimental allergic bronchopulmonary aspergillosis via a sialylationâ€dependent mechanism. European Journal of Immunology, 2019, 49, 195-198.	2.9	23
182	Covid-19-Associated Pulmonary Aspergillosis: The Other Side of the Coin. Vaccines, 2020, 8, 713.	4.4	23
183	Indole-3-Carboxaldehyde Restores Gut Mucosal Integrity and Protects from Liver Fibrosis in Murine Sclerosing Cholangitis. Cells, 2021, 10, 1622.	4.1	23
184	Candida albicans-specific Ly-2+ lymphocytes with cytolytic activity. European Journal of Immunology, 1991, 21, 1567-1570.	2.9	22
185	A GpC-Rich Oligonucleotide Acts on Plasmacytoid Dendritic Cells To Promote Immune Suppression. Journal of Immunology, 2012, 189, 2283-2289.	0.8	22
186	Distinct and complementary roles for <i>Aspergillus fumigatus</i> â€specific Tr1 and Foxp3 ⁺ regulatory T cells in humans and mice. Immunology and Cell Biology, 2014, 92, 659-670.	2.3	22
187	Pyridoxal 5′-Phosphate-Dependent Enzymes at the Crossroads of Host–Microbe Tryptophan Metabolism. International Journal of Molecular Sciences, 2020, 21, 5823.	4.1	22
188	Indoleamine 2,3-dioxygenase (IDO) in inflammation and allergy to <i>Aspergillus</i> . Medical Mycology, 2009, 47, S154-S161.	0.7	21
189	Chronic granulomatous disease. Cellular and Molecular Life Sciences, 2009, 66, 553-558.	5.4	21
190	An immunomodulatory activity of micafungin in preclinical aspergillosis. Journal of Antimicrobial Chemotherapy, 2014, 69, 1065-1074.	3.0	21
191	Mast Cells Respond to Candida albicans Infections and Modulate Macrophages Phagocytosis of the Fungus. Frontiers in Immunology, 2018, 9, 2829.	4.8	21
192	Thymosin β4 limits inflammation through autophagy. Expert Opinion on Biological Therapy, 2018, 18, 171-175.	3.1	21
193	Tryptophan Co-Metabolism at the Host-Pathogen Interface. Frontiers in Immunology, 2020, 11, 67.	4.8	21
194	Microbes in the Era of Circadian Medicine. Frontiers in Cellular and Infection Microbiology, 2020, 10, 30.	3.9	21
195	Immune Regulation and Tolerance to Fungi in the Lungs and Skin. Chemical Immunology and Allergy, 2008, 94, 124-137.	1.7	20
196	Receptors and Pathways in Innate Antifungal Immunity. Advances in Experimental Medicine and Biology, 2007, 590, 209-221.	1.6	20
197	Cracking the Toll-like receptor code in fungal infections. Expert Review of Anti-Infective Therapy, 2010, 8, 1121-1137.	4.4	19
198	Inflammation in aspergillosis: the good, the bad, and the therapeutic. Annals of the New York Academy of Sciences, 2012, 1273, 52-59.	3.8	19

#	Article	IF	CITATIONS
199	Off-label therapy targeting pathogenic inflammation in COVID-19. Cell Death Discovery, 2020, 6, 49.	4.7	19
200	TLR9 Activation Dampens the Early Inflammatory Response to Paracoccidioides brasiliensis, Impacting Host Survival. PLoS Neglected Tropical Diseases, 2013, 7, e2317.	3.0	18
201	Definition of the Anti-inflammatory Oligosaccharides Derived From the Galactosaminogalactan (GAG) From Aspergillus fumigatus. Frontiers in Cellular and Infection Microbiology, 2019, 9, 365.	3.9	18
202	Intrasplenic immunization for the induction of humoral and cell-mediated immunity to nitrocellulose-bound antigen. Journal of Immunological Methods, 1991, 137, 9-15.	1.4	17
203	Low-Dose Streptozotocin-Induced Diabetes in Mice. Cellular Immunology, 1993, 150, 36-44.	3.0	17
204	Host Defense Pathways Against Fungi: The Basis for Vaccines and Immunotherapy. Frontiers in Microbiology, 2012, 3, 176.	3.5	17
205	Invasive mould infections in solid organ transplant patients: modifiers and indicators of disease and treatment response. Infection, 2019, 47, 919-927.	4.7	17
206	Autophagy suppresses the pathogenic immune response to dietary antigens in cystic fibrosis. Cell Death and Disease, 2019, 10, 258.	6.3	17
207	Tryptophan as a Central Hub for Host/Microbial Symbiosis. International Journal of Tryptophan Research, 2020, 13, 117864692091975.	2.3	17
208	Cell-mediated immunity to chemically xenogenized tumors I. Inhibition by specific antisera and H-2 association of the novel antigens. Cancer Immunology, Immunotherapy, 1988, 26, 48-54.	4.2	16
209	Genetic Polymorphisms Affecting IDO1 or IDO2 Activity Differently Associate With Aspergillosis in Humans. Frontiers in Immunology, 2019, 10, 890.	4.8	16
210	Aspergillus fumigatus tryptophan metabolic route differently affects host immunity. Cell Reports, 2021, 34, 108673.	6.4	16
211	Chemical xenogenization of tumor cells. Trends in Pharmacological Sciences, 1985, 6, 485-487.	8.7	15
212	Cell-mediated immunity to chemically xenogenized tumors. Cellular Immunology, 1988, 111, 365-378.	3.0	15
213	Could Sars-Cov2 affect MS progression?. Multiple Sclerosis and Related Disorders, 2020, 46, 102540.	2.0	15
214	Anakinra Activates Superoxide Dismutase 2 to Mitigate Inflammasome Activity. International Journal of Molecular Sciences, 2021, 22, 6531.	4.1	15
215	Targeted Drug Delivery Technologies Potentiate the Overall Therapeutic Efficacy of an Indole Derivative in a Mouse Cystic Fibrosis Setting. Cells, 2021, 10, 1601.	4.1	15
216	Thymosin α1 protects from CTLA-4 intestinal immunopathology. Life Science Alliance, 2020, 3, e202000662.	2.8	15

#	Article	IF	CITATIONS
217	Immunity and tolerance to Aspergillus fumigatus. Novartis Foundation Symposium, 2006, 279, 66-77; discussion 77-9, 216-9.	1.1	15
218	Genetic susceptibility to aspergillosis in allogeneic stem-cell transplantation. Medical Mycology, 2011, 49, S137-S143.	0.7	14
219	Immunogenetic Profiling to Predict Risk of Invasive Fungal Diseases: Where Are We Now?. Immunological Investigations, 2011, 40, 723-734.	2.0	14
220	AhR: Far more than an environmental sensor. Cell Cycle, 2014, 13, 2645-2646.	2.6	14
221	Learning from other diseases: protection and pathology in chronic fungal infections. Seminars in Immunopathology, 2016, 38, 239-248.	6.1	14
222	O 6-Methylguanine-DNA methyltransferase activity and induction of novel immunogenicity in murine tumor cells treated with methylating agents. Cancer Chemotherapy and Pharmacology, 1992, 29, 277-282.	2.3	13
223	HOPS/Tmub1 involvement in the NF-kB-mediated inflammatory response through the modulation of TRAF6. Cell Death and Disease, 2020, 11, 865.	6.3	13
224	Thymosin β4 promotes autophagy and repair via HIF-1α stabilization in chronic granulomatous disease. Life Science Alliance, 2019, 2, e201900432.	2.8	13
225	Cell-mediated immunity to chemically xenogenized tumors—III. Generation of monoclonal antibodies interfering with reactivity to novel antigens. International Journal of Immunopharmacology, 1988, 10, 803-809.	1.1	12
226	Thymosin $\hat{I}\pm 1$: burying secrets in the thymus. Expert Opinion on Biological Therapy, 2015, 15, 51-58.	3.1	12
227	Autophagy and LAP in the Fight against Fungal Infections: Regulation and Therapeutics. Mediators of Inflammation, 2018, 2018, 1-7.	3.0	12
228	Rapidly expanded partially HLA DRB1–matched fungus-specific T cells mediate in vitro and in vivo antifungal activity. Blood Advances, 2020, 4, 3443-3456.	5.2	12
229	Pharyngeal Microbial Signatures Are Predictive of the Risk of Fungal Pneumonia in Hematologic Patients. Infection and Immunity, 2021, 89, e0010521.	2.2	12
230	Lack of correlation between DNA-methylating activity and appearance of the immunogenic phenotype in clones of a murine lymphoma treated with mutagens. Cancer Immunology, Immunotherapy, 1989, 29, 139-43.	4.2	10
231	IL-9 Integrates the Host-Candida Cross-Talk in Vulvovaginal Candidiasis to Balance Inflammation and Tolerance. Frontiers in Immunology, 2018, 9, 2702.	4.8	10
232	Selectively targeting key inflammatory pathways in cystic fibrosis. European Journal of Medicinal Chemistry, 2020, 206, 112717.	5.5	10
233	The Circadian Protein PER1 Modulates the Cellular Response to Anticancer Treatments. International Journal of Molecular Sciences, 2021, 22, 2974.	4.1	10
234	<i>In vivo</i> active organometallic-containing antimycotic agents. RSC Chemical Biology, 2021, 2, 1263-1273.	4.1	10

LUIGINA ROMANI

#	Article	IF	CITATIONS
235	Disease Tolerance Mediated by Phosphorylated Indoleamine-2,3 Dioxygenase Confers Resistance to a Primary Fungal Pathogen. Frontiers in Immunology, 2017, 8, 1522.	4.8	9
236	Role of IL-17RA in the proliferative priming of hepatocytes in liver regeneration. Cell Cycle, 2018, 17, 2423-2435.	2.6	9
237	Involvement of the Th1 subset of CD4+ T cells in acquired immunity to mouse infection with Trypanosoma equiperdum. Cellular Immunology, 1992, 143, 261-271.	3.0	8
238	Cytokine modulation of specific and nonspecific immunity to <i>Candida albicans</i> . Mycoses, 1999, 42, 45-48.	4.0	8
239	To Be or Not to Be a Pathogen: Candida albicans and Celiac Disease. Frontiers in Immunology, 2019, 10, 2844.	4.8	8
240	Genistein antagonizes gliadin-induced CFTR malfunction in models of celiac disease. Aging, 2019, 11, 2003-2019.	3.1	8
241	Cell-mediated immunity to chemically xenogenized tumors — IV. Production of lymphokine activity by, and in response to, highly immunogenic cells. International Journal of Immunopharmacology, 1989, 11, 537-542.	1.1	7
242	Untreated or drug-treated tumor cells are differentially recognized by allogeneic lymphocytes. International Journal of Immunopharmacology, 1994, 16, 569-579.	1.1	7
243	Detection of Fusarium-specific T cells in hematologic patients with invasive fusariosis. Journal of Infection, 2017, 74, 314-318.	3.3	7
244	Cellular proteostasis: a new twist in the action of thymosin α1. Expert Opinion on Biological Therapy, 2018, 18, 43-48.	3.1	7
245	Anakinra restores cellular proteostasis by coupling mitochondrial redox balance to autophagy. Journal of Clinical Investigation, 2022, 132, .	8.2	7
246	Search for class II major histocompatibility complex molecular involvement in the response of Lyt-2+cytotoxic T lymphocyte precursors to alloantigen. European Journal of Immunology, 1985, 15, 1125-1130.	2.9	6
247	Response from Romani et al.: Microbial virulence results from the interaction between host and microorganism. Trends in Microbiology, 2003, 11, 158-159.	7.7	6
248	Immunity to fungi. , 2007, , 1-18.		6
249	RT-qPCR detection ofAspergillus fumigatusRNAin vitroand in a murine model of invasive aspergillosis utilizing the PAXgene®and Tempus™ RNA stabilization systems. Medical Mycology, 2012, 50, 661-666.	0.7	6
250	Biochemical Characterization of Aspergillus fumigatus AroH, a Putative Aromatic Amino Acid Aminotransferase. Frontiers in Molecular Biosciences, 2018, 5, 104.	3.5	6
251	Microbiome-mediated regulation of anti-fungal immunity. Current Opinion in Microbiology, 2020, 58, 8-14.	5.1	6

252 Cytokines of Innate and Adaptive Immunity to Candida albicans. , 0, , 227-241.

6

#	Article	IF	CITATIONS
253	A High-Risk Profile for Invasive Fungal Infections Is Associated with Altered Nasal Microbiota and Niche Determinants. Infection and Immunity, 2022, 90, e0004822.	2.2	6
254	BCG-infected adherent mononuclear cells release cytokines that regulate group 1 CD1 molecule expression. International Immunopharmacology, 2007, 7, 321-332.	3.8	5
255	Primary and Memory Response of Human Monocytes to Vaccines: Role of Nanoparticulate Antigens in Inducing Innate Memory. Nanomaterials, 2021, 11, 931.	4.1	5
256	The Plasticity of Dendritic Cells at the Host/Fungal Interface. Immunobiology, 2001, 204, 582-589.	1.9	4
257	Small Molecule CCR4 Antagonists Protect Mice from Aspergillus Infection and Allergy. Biomolecules, 2021, 11, 351.	4.0	4
258	Innate and Acquired Cellular Immunity to Fungi. , 0, , 471-486.		4
259	Overview of the Fungal Pathogens. , 0, , 25-37.		4
260	Animal Models for Candidiasis. Current Protocols in Immunology, 1999, 30, Unit 19.6.	3.6	3
261	Manipulating immunity againstAspergillus fumigatus. Medical Mycology, 2006, 44, 237-243.	0.7	3
262	Immunity and tolerance to infections in experimental hematopoietic transplantation. Best Practice and Research in Clinical Haematology, 2011, 24, 435-442.	1.7	3
263	Amphotericin B still in the headlines. Pathogens and Global Health, 2012, 106, 80-81.	2.3	3
264	Thymosin alpha 1 exerts beneficial extrapulmonary effects in cystic fibrosis. European Journal of Medicinal Chemistry, 2021, 209, 112921.	5.5	3
265	A Shifted Composition of the Lung Microbiota Conditions the Antifungal Response of Immunodeficient Mice. International Journal of Molecular Sciences, 2021, 22, 8474.	4.1	3
266	Xenogenization of Experimental Tumors by Triazene Derivatives. , 1990, , 79-89.		3
267	Alloreactive Natural Killer Cells Rebuild Adaptive Immunity to Infections after Haploidentical Hematopoietic Transplantation Blood, 2006, 108, 3210-3210.	1.4	3
268	Susceptibility of murine lymphoma cells treated with 5-(3,3-dimethyl-1-triazenyl)-1H-imidazole-4-carboxamide to NK-mediated cytotoxicity in vitro. International Journal of Immunopharmacology, 1983, 5, 299-306.	1.1	2
269	Drug-induced modulation of IL-2 production in experimental murine trypanosomiasis. International Journal of Immunopharmacology, 1992, 14, 1165-1173.	1.1	2
270	Tumor-specific L3T4+ and Lyt-2+ lymphocytes in mice primed to mutagenized cell variants. International Journal of Immunopharmacology, 1992, 14, 915-921.	1.1	2

#	Article	IF	CITATIONS
271	Innate and Adaptive Immunity to Systemic Candida albicans Infection. , 2005, , 377-401.		2
272	The bone marrow represents an enrichment site of specific T lymphocytes against filamentous fungi. Medical Mycology, 2016, 54, 327-332.	0.7	2
273	Reply to â€~F508del-CFTR is not corrected by thymosin α1'. Nature Medicine, 2018, 24, 891-893.	30.7	2
274	Modeling Approaches Reveal New Regulatory Networks in Aspergillus fumigatus Metabolism. Journal of Fungi (Basel, Switzerland), 2020, 6, 108.	3.5	2
275	Crystal structure of <i>Aspergillus fumigatus</i> <scp>AroH</scp> , an aromatic amino acid aminotransferase. Proteins: Structure, Function and Bioinformatics, 2022, 90, 435-442.	2.6	2
276	Immunology of Invasive Candidiasis. , 0, , 125-136.		2
277	Candida Albicans Allergenic Extract Induces Toll-like Receptor Expression and Increases Interferon-? Production. Pediatric Dermatology, 2006, 23, 517-518.	0.9	1
278	TH17 Cells in Fungal Infections. , 2011, , 299-317.		1
279	Romani & Puccetti reply. Nature, 2014, 514, E18-E18.	27.8	1
280	The Mast Cell-Aryl Hydrocarbon Receptor Interplay at the Host-Microbe Interface. Mediators of Inflammation, 2018, 2018, 1-6.	3.0	1
281	Thymosin Alfa 1 Administration Improves Immune Reconstitution and Decreases Infection-Related Mortality After HLA-Matched Sibling T Cell-Depleted Stem Cell Transplantation. Blood, 2011, 118, 1013-1013.	1.4	1
282	Defective Glyoxalase 1 Contributes to Pathogenic Inflammation in Cystic Fibrosis. Vaccines, 2021, 9, 1311.	4.4	1
283	Production of the Long Pentraxin PTX3 by Myeloid Dendritic Cells: Linking Cellular and Humoral Innate Immunity. , 0, , 165-174.		0
284	Immunology of Aspergillus and Aspergillosis: The Story So Far. , 2009, , 33-52.		0
285	Correction: IDO Mediates Tlr9-Driven Protection From Experimental Autoimmune Diabetes. Journal of Immunology, 2010, 184, 7316-7316.	0.8	0
286	Editorial: Circadian Rhythm: From Microbes to Hosts. Frontiers in Cellular and Infection Microbiology, 2020, 10, 613181.	3.9	0
287	Pathogen-induced Immune Regulation in Transplantation. , 2010, , 257-277.		0
288	Cross-Reactive TH1 Cells to Aspergillus Fumigatus and Candida Albicans. Blood, 2010, 116, 1268-1268.	1.4	0

#	Article	IF	CITATIONS
289	Protective T-Cell Responses to Several Recombinant Aspergillus Antigens May Be Detected Since the Onset of the Infection in Patients with Invasive Aspergillosis, and May Be Exploited for Therapeutic Purposes,. Blood, 2011, 118, 3229-3229.	1.4	0
290	Dendritic Cells in <i>Aspergillus</i> Infection and Allergy. , 0, , 247-261.		0
291	Acquired Immunity: Fungal Infections. , 0, , 289-299.		0
292	IL-9 and Mast Cells Are Key Players of Candida Albicans Commensalism and Pathogenesis in the Gut. SSRN Electronic Journal, 0, , .	0.4	0
293	Dendritic cells. , 2007, , 27-49.		0