Christian Michel Zwaan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3043527/publications.pdf

Version: 2024-02-01

172457 4,846 108 29 citations h-index papers

66 g-index 111 111 111 7529 docs citations times ranked citing authors all docs

102487

#	Article	IF	CITATIONS
1	Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood, 2012, 120, 3187-3205.	1.4	451
2	The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nature Genetics, 2015, 47, 330-337.	21.4	405
3	Diverse and Targetable Kinase Alterations Drive Histiocytic Neoplasms. Cancer Discovery, 2016, 6, 154-165.	9.4	372
4	Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia. Journal of Clinical Oncology, 2015, 33, 2949-2962.	1.6	277
5	The genomic landscape of juvenile myelomonocytic leukemia. Nature Genetics, 2015, 47, 1326-1333.	21.4	233
6	The genomic landscape of core-binding factor acute myeloid leukemias. Nature Genetics, 2016, 48, 1551-1556.	21.4	215
7	An Inv(16)(p13.3q24.3)-Encoded CBFA2T3-GLIS2 Fusion Protein Defines an Aggressive Subtype of Pediatric Acute Megakaryoblastic Leukemia. Cancer Cell, 2012, 22, 683-697.	16.8	213
8	Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study. Lancet Oncology, The, 2015, 16, 465-474.	10.7	177
9	Improved CNS Control of Childhood Acute Lymphoblastic Leukemia Without Cranial Irradiation: St Jude Total Therapy Study 16. Journal of Clinical Oncology, 2019, 37, 3377-3391.	1.6	169
10	Pediatric AML: From Biology to Clinical Management. Journal of Clinical Medicine, 2015, 4, 127-149.	2.4	152
11	Pediatric non–Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nature Genetics, 2017, 49, 451-456.	21.4	152
12	Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nature Communications, 2018, 9, 3962.	12.8	142
13	The biology of pediatric acute megakaryoblastic leukemia. Blood, 2015, 126, 943-949.	1.4	105
14	Integrative analysis of type-I and type-II aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia. Haematologica, 2011, 96, 1478-1487.	3.5	102
15	Multimodal treatment, including interferon beta, of nasopharyngeal carcinoma in children and young adults. Cancer, 2012, 118, 4892-4900.	4.1	101
16	CD123 expression levels in 846 acute leukemia patients based on standardized immunophenotyping. Cytometry Part B - Clinical Cytometry, 2019, 96, 134-142.	1.5	82
17	Aprepitant for the prevention of chemotherapy-induced nausea and vomiting in children: a randomised, double-blind, phase 3 trial. Lancet Oncology, The, 2015, 16, 385-394.	10.7	80
18	Salvage treatment for children with refractory first or second relapse of acute myeloid leukaemia with gemtuzumab ozogamicin: results of a phase II study. British Journal of Haematology, 2010, 148, 768-776.	2.5	75

#	Article	IF	Citations
19	Dasatinib in Children and Adolescents With Relapsed or Refractory Leukemia: Results of the CA180-018 Phase I Dose-Escalation Study of the Innovative Therapies for Children With Cancer Consortium. Journal of Clinical Oncology, 2013, 31, 2460-2468.	1.6	75
20	Therapy reduction in patients with Down syndrome and myeloid leukemia: the international ML-DS 2006 trial. Blood, 2017, 129, 3314-3321.	1.4	64
21	A six-gene leukemic stem cell score identifies high risk pediatric acute myeloid leukemia. Leukemia, 2020, 34, 735-745.	7.2	56
22	Motivations of children and their parents to participate in drug research: a systematic review. European Journal of Pediatrics, 2016, 175, 599-612.	2.7	52
23	Acute Leukemias in Children with Down Syndrome. Pediatric Clinics of North America, 2008, 55, 53-70.	1.8	49
24	Phase II study of temozolomide in combination with topotecan (TOTEM) in relapsed or refractory neuroblastoma: A European Innovative Therapies for Children with Cancer-SIOP-European Neuroblastoma study. European Journal of Cancer, 2014, 50, 170-177.	2.8	47
25	Prevention of central venous catheter-associated bloodstream infections in paediatric oncology patients using 70% ethanol locks: A randomised controlled multi-centre trial. European Journal of Cancer, 2015, 51, 2031-2038.	2.8	42
26	OCTN1 Is a High-Affinity Carrier of Nucleoside Analogues. Cancer Research, 2017, 77, 2102-2111.	0.9	41
27	Favorable outcome of NUTM1-rearranged infant and pediatric B cell precursor acute lymphoblastic leukemia in a collaborative international study. Leukemia, 2021, 35, 2978-2982.	7.2	40
28	Low-dose cytarabine to prevent myeloid leukemia in children with Down syndrome: TMD Prevention 2007 study. Blood Advances, 2018, 2, 1532-1540.	5. 2	36
29	Acute Leukemias in Children with Down Syndrome. Hematology/Oncology Clinics of North America, 2010, 24, 19-34.	2.2	35
30	Normal karyotype is a poor prognostic factor in myeloid leukemia of Down syndrome: a retrospective, international study. Haematologica, 2014, 99, 299-307.	3.5	34
31	Key factors in children's competence to consent to clinical research. BMC Medical Ethics, 2015, 16, 74.	2.4	30
32	Acute myeloid leukaemia in a case with Tatton-Brown-Rahman syndrome: the peculiar <i>DNMT3A</i> R882 mutation. Journal of Medical Genetics, 2017, 54, 805-808.	3.2	30
33	ALK inhibition in two emblematic cases of pediatric inflammatory myofibroblastic tumor: Efficacy and side effects. Pediatric Blood and Cancer, 2019, 66, e27645.	1.5	29
34	Leukaemic stem cell load at diagnosis predicts the development of relapse in young acute myeloid leukaemia patients. British Journal of Haematology, 2018, 183, 512-516.	2.5	27
35	A high-throughput screen indicates gemcitabine and JAK inhibitors may be useful for treating pediatric AML. Nature Communications, 2019, 10, 2189.	12.8	26
36	Safety and efficacy of nelarabine in children and young adults with relapsed or refractory Tâ€lineage acute lymphoblastic leukaemia or Tâ€lineage lymphoblastic lymphoma: results of a phase 4 study. British Journal of Haematology, 2017, 179, 284-293.	2.5	25

#	Article	IF	CITATIONS
37	Clofarabine, high-dose cytarabine and liposomal daunorubicin in pediatric relapsed/refractory acute myeloid leukemia: a phase IB study. Haematologica, 2018, 103, 1484-1492.	3.5	24
38	Paediatric Strategy Forum for medicinal product development of chimeric antigen receptor T-cells in children and adolescents with cancer. European Journal of Cancer, 2022, 160, 112-133.	2.8	24
39	Targeted inhibitors and antibody immunotherapies: Novel therapies for paediatric leukaemia and lymphoma. European Journal of Cancer, 2022, 164, 1-17.	2.8	24
40	Human models of NUP98-KDM5A megakaryocytic leukemia in mice contribute to uncovering new biomarkers and therapeutic vulnerabilities. Blood Advances, 2019, 3, 3307-3321.	5.2	23
41	A phase 1/2, openâ€label, doseâ€escalation study of midostaurin in children with relapsed or refractory acute leukaemia. British Journal of Haematology, 2019, 185, 623-627.	2.5	23
42	Clinical relevance of molecular aberrations in paediatric acute myeloid leukaemia at first relapse. British Journal of Haematology, 2014, 166, 902-910.	2.5	22
43	Recurrent translocation $t(10;17)(p15;q21)$ in minimally differentiated acute myeloid leukemia results in $\langle scp \rangle \langle i \rangle ZMYND11/MBTD1 \langle i \rangle \langle scp \rangle$ fusion. Genes Chromosomes and Cancer, 2016, 55, 237-241.	2.8	22
44	Neuroblastoma stage 4S: Tumor regression rate and risk factors of progressive disease. Pediatric Blood and Cancer, 2020, 67, e28061.	1.5	21
45	A Phase 1/2 Study Of Blinatumomab In Pediatric Patients With Relapsed/Refractory B-Cell Precursor Acute Lymphoblastic Leukemia. Blood, 2013, 122, 70-70.	1.4	20
46	BCOR and BCORL1 mutations in pediatric acute myeloid leukemia. Haematologica, 2015, 100, e194-e195.	3.5	19
47	Significant improvement in survival of advanced stage childhood and young adolescent cancer in the Netherlands since the 1990s. European Journal of Cancer, 2021, 157, 81-93.	2.8	19
48	Initial Results from a Phase 2 Study of Blinatumomab in Pediatric Patients with Relapsed/Refractory B-Cell Precursor Acute Lymphoblastic Leukemia. Blood, 2014, 124, 3703-3703.	1.4	19
49	<i>PHF6</i> mutations in paediatric acute myeloid leukaemia. British Journal of Haematology, 2016, 175, 967-971.	2.5	18
50	<i>NUP98â€BPTF</i> gene fusion identified in primary refractory acute megakaryoblastic leukemia of infancy. Genes Chromosomes and Cancer, 2018, 57, 311-319.	2.8	18
51	Pediatric Cancer Data Commons: Federating and Democratizing Data for Childhood Cancer Research. JCO Clinical Cancer Informatics, 2021, 5, 1034-1043.	2.1	18
52	Phase II study of temozolomide and topotecan (TOTEM) in children with relapsed or refractory extracranial and central nervous system tumors including medulloblastoma with post hoc Bayesian analysis: A European ITCC study. Pediatric Blood and Cancer, 2020, 67, e28032.	1.5	17
53	Phase 1/2 Study in Pediatric Patients with Relapsed/Refractory B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) Receiving Blinatumomab Treatment. Blood, 2014, 124, 2292-2292.	1.4	17
54	Replication timing alterations in leukemia affect clinically relevant chromosome domains. Blood Advances, 2019, 3, 3201-3213.	5.2	15

#	Article	IF	Citations
55	Efficacy and safety of daratumumab (DARA) in pediatric and young adult patients (pts) with relapsed/refractory T-cell acute lymphoblastic leukemia (ALL) or lymphoblastic lymphoma (LL): Results from the phase 2 DELPHINUS study Journal of Clinical Oncology, 2022, 40, 10001-10001.	1.6	15
56	Long-read sequencing unveils IGH-DUX4 translocation into the silenced IGH allele in B-cell acute lymphoblastic leukemia. Nature Communications, 2019, 10, 2789.	12.8	14
57	Sorafenib Population Pharmacokinetics and Skin Toxicities in Children and Adolescents with Refractory/Relapsed Leukemia or Solid Tumor Malignancies. Clinical Cancer Research, 2019, 25, 7320-7330.	7.0	14
58	Improved survival for adolescents and young adults with Hodgkin lymphoma and continued high survival for children in the Netherlands: a populationâ€based study during 1990–2015. British Journal of Haematology, 2020, 189, 1093-1106.	2.5	13
59	An effective modestly intensive reâ€induction regimen with bortezomib in relapsed or refractory paediatric acute lymphoblastic leukaemia. British Journal of Haematology, 2018, 181, 523-527.	2.5	12
60	Uncovering the Genomic Landscape in Newly Diagnosed and Relapsed Pediatric Cytogenetically Normal <i>FLT3â€</i> ITD AML. Clinical and Translational Science, 2019, 12, 641-647.	3.1	12
61	Mapping epigenetic regulator gene mutations in cytogenetically normal pediatric acute myeloid leukemia. Haematologica, 2014, 99, e130-e132.	3.5	11
62	Predicting the neurobehavioral side effects of dexamethasone in pediatric acute lymphoblastic leukemia. Psychoneuroendocrinology, 2016, 72, 190-195.	2.7	11
63	Classification of pediatric acute myeloid leukemia based on miRNA expression profiles. Oncotarget, 2017, 8, 33078-33085.	1.8	11
64	High frequency of copy number alterations in myeloid leukaemia of <scp>D</scp> own syndrome. British Journal of Haematology, 2012, 158, 800-803.	2.5	10
65	Incidence of Germline Mutations in Cancer-Predisposition Genes in Children with Hematologic Malignancies: a Report from the Pediatric Cancer Genome Project. Blood, 2014, 124, 127-127.	1.4	9
66	Long-term efficacy and safety of larotrectinib in a pooled analysis of patients with tropomyosin receptor kinase (TRK) fusion cancer Journal of Clinical Oncology, 2022, 40, 3100-3100.	1.6	9
67	Cushing syndrome as a presenting symptom of renal tumors in children. Pediatric Blood and Cancer, 2009, 53, 211-213.	1.5	8
68	Pharmacokinetics and population pharmacokinetics in pediatric oncology. Pediatric Blood and Cancer, 2020, 67, e28132.	1.5	7
69	Transcriptome Sequence Analysis of Pediatric Acute Megakaryoblastic Leukemia Identifies An Inv(16)(p13.3;q24.3)-Encoded CBFA2T3-GLIS2 Fusion Protein As a Recurrent Lesion in 39% of Non-Infant Cases: A Report From the St. Jude Children's Research Hospital â€" Washington University Pediatric Cancer Genome Project, Blood, 2011, 118, 757-757.	1.4	7
70	Whole Genome Sequence Analysis of 22 MLL Rearranged Infant Acute Lymphoblastic Leukemias Reveals Remarkably Few Somatic Mutations: A Report From the St Jude Childrenâ€s Research Hospital - Washington University Pediatric Cancer Genome Project. Blood, 2011, 118, 69-69.	1.4	6
71	NADH Dehydrogenase Subunit 4 (ND4) Mutations in Pediatric Acute Myeloid Leukemia. Blood, 2012, 120, 1380-1380.	1.4	6
72	Transcriptome profiling of patient derived xenograft models established from pediatric acute myeloid leukemia patients confirm maintenance of FLT3-ITD mutation. Leukemia and Lymphoma, 2017, 58, 247-250.	1.3	5

#	Article	IF	Citations
7 3	Central nervous system disease in pediatric acute myeloid leukemia. Pediatric Blood and Cancer, 2017, 64, e26782.	1.5	5
74	Pediatric oncology as a <scp>Learning Health System: Ethical</scp> implications for best available treatment protocols. Learning Health Systems, 2018, 2, e10052.	2.0	5
7 5	Aprepitant for the prevention of chemotherapy-induced nausea and vomiting in paediatric subjects: An analysis by age group. Pediatric Blood and Cancer, 2018, 65, e27273.	1.5	5
76	Epigenetic drug screen identifies the histone deacetylase inhibitor NSC3852 as a potential novel drug for the treatment of pediatric acute myeloid leukemia. Pediatric Blood and Cancer, 2019, 66, e27785.	1.5	4
77	Large Interindividual Differences in In Vitro Calicheamicin Sensitivity May Underly Gemtuzumab Ozogamicin Resistance in Acute Myeloid Leukemia (AML) Blood, 2005, 106, 107-107.	1.4	4
78	Efficacy and safety of larotrectinib in pediatric patients with tropomyosin receptor kinase (TRK) fusion-positive cancer: An expanded dataset Journal of Clinical Oncology, 2022, 40, 10030-10030.	1.6	4
79	<i>NUTM1</i> -Rearranged Infant and Pediatric B Cell Precursor Acute Lymphoblastic Leukemia: A Good Prognostic Subtype Identified in a Collaborative International Study. Blood, 2020, 136, 25-26.	1.4	3
80	High Frequency of GATA1 Mutations in Childhood Non-Down Syndrome Acute Megakaryoblastic Leukemia. Blood, 2012, 120, 888-888.	1.4	3
81	Guideline for management of non-Down syndrome neonates with a myeloproliferative disease on behalf of the I-BFM AML Study Group and EWOG-MDS. Haematologica, 2022, 107, 759-764.	3.5	3
82	A tale of two genes: a new connection between <i>NIPBL</i> and <i>NPM1</i> in acute myeloid leukemia. Haematologica, 2019, 104, 1289-1291.	3.5	2
83	Voluntary Informed Consent Is Not Risk Dependent. American Journal of Bioethics, 2019, 19, 33-35.	0.9	2
84	Acute Megakaryoblastic Leukemia with Trisomy 21 and Tetrasomy 21 Clones in a Phenotypically Normal Child with Mosaic Trisomy 21. Case Reports in Pediatrics, 2020, 2020, 1-4.	0.4	2
85	Comprehensive Genomic Profiling of Pediatric Therapy-Related Myeloid Neoplasms Identifies Mecom Dysregulation to be Associated with Poor Outcome. Blood, 2019, 134, 1394-1394.	1.4	2
86	NF1 Microdeletions in Pediatric MLL-Rearranged AML and T-ALL: A Novel Mechanism for RAS Activation Blood, 2007, 110, 757-757.	1.4	2
87	HoxA9 Knockdown Inhibits Proliferation and Induces Cell Death in Human MLL-Rearranged Leukemias Blood, 2006, 108, 734-734.	1.4	2
88	Clinical Impact of Additional Cytogenetic Aberrations and Complex Karyotype In Pediatric 11q23/MLL-Rearranged AML: Results from an International Retrospective Study. Blood, 2010, 116, 762-762.	1.4	2
89	Nucleophosmin Gene Mutations Identify a Favorable Risk Group in Childhood Acute Myeloid Leukemia with a Normal Karyotype Blood, 2007, 110, 366-366.	1.4	1
90	Individualized Tumor Response (ITR) Profiling for Drug Selection in Tailored Therapy: Meta-Analysis of 1929 Cases of Leukemia and Lymphoma Blood, 2007, 110, 3471-3471.	1.4	1

#	Article	IF	CITATIONS
91	Unraveling the Molecular Basis of Langerhans and Non-Langerhans Cell Histiocytic Neoplasms through Whole Exome Sequencing. Blood, 2014, 124, 1887-1887.	1.4	1
92	Pediatric LSC3 (pLSC3) Score Derived from DNMT3B-CD34-GPR56 As a Prognostic Tool to Predict AML Patient Outcome: Results from Two Independent Pediatric AML Cohorts. Blood, 2018, 132, 290-290.	1.4	1
93	KMT2A-Rearranged Infant Acute Lymphoblastic Leukemia Cells Undergo ER-Stress-Induced Apoptosis Following Exposure to Proteasome Inhibitors. Blood, 2019, 134, 1283-1283.	1.4	1
94	A 5-Gene Ara-C, Daunorubicin and Etoposide (ADE) Drug Response Score As a Prognostic Tool to Predict AML Treatment Outcome. Blood, 2019, 134, 1429-1429.	1.4	1
95	The Molecular Characteristics and Clinical Relevance of NUP98-Other Translocations in Pediatric Acute Myeloid Leukemia. Blood, 2020, 136, 36-37.	1.4	1
96	Patients with Chromosome 11q Deletions Are Characterized by Inborn Errors of Immunity Involving both B and T Lymphocytes. Journal of Clinical Immunology, 0, , .	3.8	1
97	Single-Cell RNA Sequencing Reveals a Developmental Hierarchy in Langerhans Cell Histiocytosis. Cancer Discovery, 2019, 9, 1343-1345.	9.4	0
98	Absence of JAK2 V617F Activating Mutations in Children with Acute Megakaryoblastic Leukemia with and without Down Syndrome Blood, 2006, 108, 4325-4325.	1.4	0
99	FLT3 and KIT Mutated Pediatric Acute Myeloid Leukemia (AML) Samples Are More Sensitive In Vitro to the Tyrosine Kinase Inhibitor SU11657 Blood, 2006, 108, 1359-1359.	1.4	0
100	Dexamethasone-Based Treatment and the Risk of CNS-Relapse in Acute Lymphoblastic Leukemia: Results from DCOG Protocol ALL-9 Blood, 2006, 108, 1867-1867.	1.4	0
101	Differences in Cyto- and Molecular Genetic Abnormalities between Children <2 Years and Older Children with Acute Myeloid Leukemia Blood, 2007, 110, 1830-1830.	1.4	0
102	Clinical and Prognostic Significance of Eosinophilia and Inv(16)/t(16;16) In Pediatric Acute Myelomonocytic Leukemia (AML-M4) Blood, 2010, 116, 1664-1664.	1.4	0
103	Diverse and Targetable Kinase Alterations Drive Histiocytic Neoplasms. Blood, 2015, 126, 481-481.	1.4	0
104	Prevalence of RNA Editing Events Affecting Coding Regions in Pediatric Leukemia. Blood, 2016, 128, 3928-3928.	1.4	0
105	Genomic Profiling Identifies Novel Mutations and Fusion Genes in Newly Diagnosed and Relapsed Pediatric FLT3-ITD-Positive AML. Blood, 2016, 128, 2838-2838.	1.4	0
106	Non-Coding HOX Fusions in Pediatric Non-Down Syndrome Acute Megakaryoblastic Leukemia. Blood, 2019, 134, 533-533.	1.4	0
107	Immunotherapy: genetically agnostic in BCP-ALL?. Blood, 2022, 139, 2093-2094.	1.4	0
108	Updated health-related quality of life of patients with TRK-fusion cancer treated with larotrectinib in clinical trials Journal of Clinical Oncology, 2022, 40, 6563-6563.	1.6	0