Krister Wennerberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3042818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimal information for chemosensitivity assays (MICHA): a next-generation pipeline to enable the FAIRification of drug screening experiments. Briefings in Bioinformatics, 2022, 23, .	6.5	7
2	Implementing a Functional Precision Medicine Tumor Board for Acute Myeloid Leukemia. Cancer Discovery, 2022, 12, 388-401.	9.4	73
3	Pancreatic Cancer Organoids in the Field of Precision Medicine: A Review of Literature and Experience on Drug Sensitivity Testing with Multiple Readouts and Synergy Scoring. Cancers, 2022, 14, 525.	3.7	7
4	Comprehensive and unbiased multiparameter high-throughput screening by compaRe finds effective and subtle drug responses in AML models. ELife, 2022, 11, .	6.0	2
5	Concurrent Inhibition of IGF1R and ERK Increases Pancreatic Cancer Sensitivity to Autophagy Inhibitors. Cancer Research, 2022, 82, 586-598.	0.9	27
6	Exploration of databases and methods supporting drug repurposing: a comprehensive survey. Briefings in Bioinformatics, 2021, 22, 1656-1678.	6.5	66
7	Patient-tailored design for selective co-inhibition of leukemic cell subpopulations. Science Advances, 2021, 7, .	10.3	28
8	Multiâ€modal metaâ€analysis of cancer cell line omics profiles identifies ECHDC1 as a novel breast tumor suppressor. Molecular Systems Biology, 2021, 17, e9526.	7.2	8
9	Selective drug combination vulnerabilities in STAT3- and TP53-mutant malignant NK cells. Blood Advances, 2021, 5, 1862-1875.	5.2	5
10	CIP2A Interacts with TopBP1 and Drives Basal-Like Breast Cancer Tumorigenesis. Cancer Research, 2021, 81, 4319-4331.	0.9	26
11	Crowdsourced mapping of unexplored target space of kinase inhibitors. Nature Communications, 2021, 12, 3307.	12.8	41
12	Bayesian multi-source regression and monocyte-associated gene expression predict BCL-2 inhibitor resistance in acute myeloid leukemia. Npj Precision Oncology, 2021, 5, 71.	5.4	12
13	Network-guided identification of cancer-selective combinatorial therapies in ovarian cancer. Briefings in Bioinformatics, 2021, 22, .	6.5	13
14	Functional diagnostics using fresh uncultured lung tumor cells to guide personalized treatments. Cell Reports Medicine, 2021, 2, 100373.	6.5	6
15	Multi-parametric single cell evaluation defines distinct drug responses in healthy hematologic cells that are retained in corresponding malignant cell types. Haematologica, 2020, 105, 1527-1538.	3.5	19
16	ALDH1A1â€related stemness in highâ€grade serous ovarian cancer is a negative prognostic indicator but potentially targetable by EGFR/mTORâ€PI3K/aurora kinase inhibitors. Journal of Pathology, 2020, 250, 159-169.	4.5	37
17	Atypical KRASG12R Mutant Is Impaired in PI3K Signaling and Macropinocytosis in Pancreatic Cancer. Cancer Discovery, 2020, 10, 104-123.	9.4	131
18	Human Tumor–Derived Matrix Improves the Predictability of Head and Neck Cancer Drug Testing. Cancers, 2020, 12, 92.	3.7	20

#	Article	IF	CITATIONS
19	Improved detection of differentially represented DNA barcodes for highâ€throughput clonal phenomics. Molecular Systems Biology, 2020, 16, e9195.	7.2	15
20	KIT pathway upregulation predicts dasatinib efficacy in acute myeloid leukemia. Leukemia, 2020, 34, 2780-2784.	7.2	6
21	Mitochondria in Their Prime Drive Venetoclax Response in Acute Myeloid Leukemia. Cancer Cell, 2020, 38, 776-778.	16.8	1
22	Low-Dose Vertical Inhibition of the RAF-MEK-ERK Cascade Causes Apoptotic Death of KRAS Mutant Cancers. Cell Reports, 2020, 31, 107764.	6.4	69
23	Therapeutic targeting of KSP in preclinical models of high-risk neuroblastoma. Science Translational Medicine, 2020, 12, .	12.4	22
24	Phosphoproteome and drug-response effects mediated by the three protein phosphatase 2A inhibitor proteins CIP2A, SET, and PME-1. Journal of Biological Chemistry, 2020, 295, 4194-4211.	3.4	48
25	Immunogenomic Landscape of Hematological Malignancies. Cancer Cell, 2020, 38, 380-399.e13.	16.8	109
26	Pan-RAF inhibition induces apoptosis in acute myeloid leukemia cells and synergizes with BCL2 inhibition. Leukemia, 2020, 34, 3186-3196.	7.2	22
27	Breeze: an integrated quality control and data analysis application for high-throughput drug screening. Bioinformatics, 2020, 36, 3602-3604.	4.1	68
28	A normalized drug response metric improves accuracy and consistency of anticancer drug sensitivity quantification in cell-based screening. Communications Biology, 2020, 3, 42.	4.4	23
29	Identification of novel regulators of STAT3 activity. PLoS ONE, 2020, 15, e0230819.	2.5	12
30	Abstract P6-10-28: Therapeutic stratification of triple negative breast cancer by integrating chemosensitivity & phospho-proteome profiles. , 2020, , .		0
31	TBIO-18. ESTABLISHING A PIPELINE FOR INDIVIDUALIZED TREATMENT OPTIONS FOR PEDIATRIC BRAIN CANCER. Neuro-Oncology, 2020, 22, iii470-iii470.	1.2	0
32	Integration of Deep Multi-Omics Profiling Veals New Insights into the Biology of Poor-Risk Acute Myeloid Leukemia. Blood, 2020, 136, 39-40.	1.4	0
33	Identification of novel regulators of STAT3 activity. , 2020, 15, e0230819.		0
34	Identification of novel regulators of STAT3 activity. , 2020, 15, e0230819.		0
35	Identification of novel regulators of STAT3 activity. , 2020, 15, e0230819.		0
36	Identification of novel regulators of STAT3 activity. , 2020, 15, e0230819.		0

3

#	Article	IF	CITATIONS
37	Network pharmacology modeling identifies synergistic Aurora B and ZAK interaction in triple-negative breast cancer. Npj Systems Biology and Applications, 2019, 5, 20.	3.0	32
38	Intertumoral heterogeneity in patient-specific drug sensitivities in treatment-naÃ ⁻ ve glioblastoma. BMC Cancer, 2019, 19, 628.	2.6	55
39	Chemogenomic Analysis of the Druggable Kinome and Its Application to Repositioning and Lead Identification Studies. Cell Chemical Biology, 2019, 26, 1608-1622.e6.	5.2	14
40	Novel Screening Method Identifies PI3Kα, mTOR, and IGF1R as Key Kinases Regulating Cardiomyocyte Survival. Journal of the American Heart Association, 2019, 8, e013018.	3.7	4
41	Receptor Tyrosine Kinase Signaling Networks Define Sensitivity to ERBB Inhibition and Stratify <i>Kras</i> -Mutant Lung Cancers. Molecular Cancer Therapeutics, 2019, 18, 1863-1874.	4.1	8
42	Phenotypic Screening Combined with Machine Learning for Efficient Identification of Breast Cancer-Selective Therapeutic Targets. Cell Chemical Biology, 2019, 26, 970-979.e4.	5.2	34
43	8â€chloroâ€adenosine activity in FLT3â€ITD acute myeloid leukemia. Journal of Cellular Physiology, 2019, 234, 16295-16303.	4.1	12
44	Drug sensitivity testing on patient-derived sarcoma cells predicts patient response to treatment and identifies c-Sarc inhibitors as active drugs for translocation sarcomas. British Journal of Cancer, 2019, 120, 435-443.	6.4	24
45	Feasibility study of using highâ€ŧhroughput drug sensitivity testing to target recurrent glioblastoma stem cells for individualized treatment. Clinical and Translational Medicine, 2019, 8, 33.	4.0	20
46	Drug screening approach combines epigenetic sensitization with immunochemotherapy in cancer. Clinical Epigenetics, 2019, 11, 192.	4.1	1
47	Prediction of drug combination effects with a minimal set of experiments. Nature Machine Intelligence, 2019, 1, 568-577.	16.0	99
48	Integrated Analysis of Drug Sensitivity and Selectivity to Predict Synergistic Drug Combinations and Target Coaddictions in Cancer. Methods in Molecular Biology, 2019, 1888, 205-217.	0.9	7
49	Anagrelide for Gastrointestinal Stromal Tumor. Clinical Cancer Research, 2019, 25, 1676-1687.	7.0	14
50	Abstract 2153: Ex vivo drug sensitivity testing of primary cells for precision cancer medicine. , 2019, , .		0
51	Abstract 458: Precision systems medicine in acute myeloid leukemia: real-time translation of tailored therapeutic opportunities arising from ex-vivo drug sensitivity testing and molecular profiling. , 2019, , .		0
52	Abstract A137: Drug screening and molecular profiling identifies INKA1 as a predictive biomarker for sensitivity to MAPK inhibition-antimitotic combination treatment in pancreatic ductal adenocarcinoma. , 2019, , .		0
53	Patient-Customized Drug Combination Prediction and Testing for T-cell Prolymphocytic Leukemia Patients. Cancer Research, 2018, 78, 2407-2418.	0.9	60
54	Toward universal protein post-translational modification detection in high throughput format. Chemical Communications, 2018, 54, 2910-2913.	4.1	9

#	Article	IF	CITATIONS
55	Methods for High-throughput Drug Combination Screening and Synergy Scoring. Methods in Molecular Biology, 2018, 1711, 351-398.	0.9	140
56	Drug Target Commons: A Community Effort to Build a Consensus Knowledge Base for Drug-Target Interactions. Cell Chemical Biology, 2018, 25, 224-229.e2.	5.2	124
57	Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma. Hepatology, 2018, 68, 949-963.	7.3	106
58	Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach. Bioinformatics, 2018, 34, 1353-1362.	4.1	56
59	Interactive visual analysis of drug–target interaction networks using Drug Target Profiler, with applications to precision medicine and drug repurposing. Briefings in Bioinformatics, 2018, , .	6.5	25
60	KRAS Suppression-Induced Degradation of MYC Is Antagonized by a MEK5-ERK5 Compensatory Mechanism. Cancer Cell, 2018, 34, 807-822.e7.	16.8	112
61	Drug Target Commons 2.0: a community platform for systematic analysis of drug–target interaction profiles. Database: the Journal of Biological Databases and Curation, 2018, 2018, 1-13.	3.0	36
62	Drug-Sensitivity Screening and Genomic Characterization of 45 HPV-Negative Head and Neck Carcinoma Cell Lines for Novel Biomarkers of Drug Efficacy. Molecular Cancer Therapeutics, 2018, 17, 2060-2071.	4.1	33
63	Targeting autophagy by small molecule inhibitors of vacuolar protein sorting 34 (Vps34) improves the sensitivity of breast cancer cells to Sunitinib. Cancer Letters, 2018, 435, 32-43.	7.2	93
64	PP2A inhibition is a druggable MEK inhibitor resistance mechanism in KRAS-mutant lung cancer cells. Science Translational Medicine, 2018, 10, .	12.4	116
65	Abstract SY20-02: Inhibitor combinations targeting KRAS effector signaling inKRAS-mutant pancreatic cancer. , 2018, , .		1
66	Comparative Analysis of Independent Ex Vivo functional Drug Screens Identifies Predictive Biomarkers of BCL-2 Inhibitor Response in AML. Blood, 2018, 132, 2763-2763.	1.4	1
67	Multi-Parametric Single Cell Profiling Defines Distinct Drug Responses in Healthy Hematological Cell Lineages That Are Retained in Corresponding Malignant Cell Types. Blood, 2018, 132, 264-264.	1.4	5
68	Paradox-Breaker Pan-RAF Inhibitors Induce an AML-Specific Cytotoxic Response and Synergize with Venetoclax to Display Superior Antileukemic Activity. Blood, 2018, 132, 2210-2210.	1.4	2
69	Predictive Response Biomarkers for BET Inhibitors in AML. Blood, 2018, 132, 2749-2749.	1.4	2
70	Abstract A149: A chemical screening and machine learning approach to de-convolve kinase addictions in TNBC. , 2018, , .		0
71	Abstract 3883: Gene expression predictsex vivodrug sensitivity in acute myeloid leukemia. , 2018, , .		0
72	Abstract 3343: Identifying kinases and phosphatases that regulate STAT3 activity. , 2018, , .		0

5

#	Article	IF	CITATIONS
73	Abstract 875: Chemical biology approach to phenotypic intra-tumor heterogeneity in high-grade serous ovarian cancer. , 2018, , .		0
74	Abstract 3899: Discovery and clinical implementation of individualized therapies in acute myeloid leukemia based onex vivodrug sensitivity testing and multi-omics profiling. , 2018, , .		0
75	Expanding the Utility of Midostaurin in Acute Myeloid Leukemia - Predictive Mutational Signatures in Patient Samples without FLT3 mutations and Clinically Applicable Synergistic Drug Combinations. Blood, 2018, 132, 2743-2743.	1.4	0
76	Antileukemic Activity of 8-Chloro-Adenosine (8-Cl-Ado) Is Mediated By Mir-155 Degradation and ErbB3 Binding Protein (Ebp1)-Dependent p53 Activation: A Novel Therapeutic Approach for FLT3-ITD Acute Myeloid Leukemia (AML). Blood, 2018, 132, 3938-3938.	1.4	0
77	Targeting BCL-2, BCL-XL, BCL-W and MDM2 in B-Cell Acute Lymphoblastic Leukemia Is Highly Effective Ex Vivo. Blood, 2018, 132, 3975-3975.	1.4	0
78	Comprehensive Drug Testing of Patient-derived Conditionally Reprogrammed Cells from Castration-resistant Prostate Cancer. European Urology, 2017, 71, 319-327.	1.9	74
79	Systematic drug sensitivity testing reveals synergistic growth inhibition by dasatinib or mTOR inhibitors with paclitaxel in ovarian granulosa cell tumor cells. Gynecologic Oncology, 2017, 144, 621-630.	1.4	26
80	JAK1/2 and BCL2 inhibitors synergize to counteract bone marrow stromal cell–induced protection of AML. Blood, 2017, 130, 789-802.	1.4	90
81	High-Throughput Dual Screening Method for Ras Activities and Inhibitors. Analytical Chemistry, 2017, 89, 4508-4516.	6.5	13
82	A Community Challenge for Inferring Genetic Predictors of Gene Essentialities through Analysis of a Functional Screen of Cancer Cell Lines. Cell Systems, 2017, 5, 485-497.e3.	6.2	19
83	A transcriptomics data-driven gene space accurately predicts liver cytopathology and drug-induced liver injury. Nature Communications, 2017, 8, 15932.	12.8	99
84	Seed-effect modeling improves the consistency of genome-wide loss-of-function screens and identifies synthetic lethal vulnerabilities in cancer cells. Genome Medicine, 2017, 9, 51.	8.2	12
85	Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression. Bioinformatics, 2017, 33, i359-i368.	4.1	58
86	Identification and Clinical Exploration of Individualized Targeted Therapeutic Approaches in Acute Myeloid Leukemia Patients By Integrating Drug Response and Deep Molecular Profiles. Blood, 2017, 130, 854-854.	1.4	1
87	Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors. PLoS Computational Biology, 2017, 13, e1005678.	3.2	84
88	Effects of an unusual poison identify a lifespan role for Topoisomerase 2 in Saccharomyces cerevisiae. Aging, 2017, 9, 68-97.	3.1	10
89	Differentiation status of primary chronic myeloid leukemia cells affects sensitivity to BCR-ABL1 inhibitors. Oncotarget, 2017, 8, 22606-22615.	1.8	13
90	Drug sensitivity profiling identifies potential therapies for lymphoproliferative disorders with overactive JAK/STAT3 signaling. Oncotarget, 2017, 8, 97516-97527.	1.8	28

#	Article	IF	CITATIONS
91	Abstract A26: Prediction of synergistic anticancer drug combinations by integrating chemical and genetic screens. , 2017, , .		0
92	c-Abl Inhibitors Enable Insights into the Pathophysiology and Neuroprotection in Parkinson's Disease. Frontiers in Aging Neuroscience, 2016, 8, 254.	3.4	33
93	Consistency in drug response profiling. Nature, 2016, 540, E5-E6.	27.8	76
94	Identification of selective cytotoxic and synthetic lethal drug responses in triple negative breast cancer cells. Molecular Cancer, 2016, 15, 34.	19.2	57
95	Cancer Cell Drug Response Transcriptomes in 3D. Cell Chemical Biology, 2016, 23, 1323-1324.	5.2	2
96	Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis. Nature Communications, 2016, 7, 12460.	12.8	73
97	Precision Cancer Medicine in the Acoustic Dispensing Era: Ex Vivo Primary Cell Drug Sensitivity Testing. Journal of the Association for Laboratory Automation, 2016, 21, 27-36.	2.8	22
98	Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antiviral Research, 2016, 126, 117-124.	4.1	156
99	Long-Term ERK Inhibition in KRAS-Mutant Pancreatic Cancer Is Associated with MYC Degradation and Senescence-like Growth Suppression. Cancer Cell, 2016, 29, 75-89.	16.8	191
100	Abstract PR17: Characterization of ascites and tumor-derived ovarian cancer stem-like cells , 2016, , .		0
101	Abstract 608: Comprehensive drug testing of patient-derived conditionally reprogrammed cells from castration-resistant prostate cancer. , 2016, , .		1
102	Abstract 4679: Acquisition of cytarabine resistance leads to increased glucocorticoid sensitivity in AML. , 2016, , .		0
103	Abstract 2378: Responses of AML patients to tailored drug regimens: monitoring cancer subclones by ultra-deep resequencing. , 2016, , .		1
104	Targeting of JAK/STAT Signaling to Reverse Stroma-Induced Cytoprotection Against BCL2 Antagonist Venetoclax in Acute Myeloid Leukemia. Blood, 2016, 128, 32-32.	1.4	14
105	8-Chloro-Adenosine Inhibits Molecular Poor-Risk Acute Myeloid Leukemia (AML) and Leukemic Stem Cells (LSC) Growth and Synergizes with the BCL-2 Inhibitor Venetoclax (ABT-199). Blood, 2016, 128, 2758-2758.	1.4	0
106	From drug response profiling to target addiction scoring in cancer cell models. DMM Disease Models and Mechanisms, 2015, 8, 1255-1264.	2.4	13
107	MgcRacGAP inhibition stimulates JAKâ€dependent STAT3 activity. FEBS Letters, 2015, 589, 3859-3865.	2.8	8
108	Bioluminescent, Nonlytic, Real-Time Cell Viability Assay and Use in Inhibitor Screening. Assay and Drug Development Technologies, 2015, 13, 456-465.	1.2	57

#	Article	IF	CITATIONS
109	Discovery of MINC1, a GTPase-Activating Protein Small Molecule Inhibitor, Targeting MgcRacGAP. Combinatorial Chemistry and High Throughput Screening, 2015, 18, 3-17.	1.1	9
110	What is synergy? The Saariselkägreement revisited. Frontiers in Pharmacology, 2015, 6, 181.	3.5	147
111	Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Natural Product Reports, 2015, 32, 1249-1266.	10.3	331
112	TIMMA-R: an R package for predicting synergistic multi-targeted drug combinations in cancer cell lines or patient-derived samples. Bioinformatics, 2015, 31, 1866-1868.	4.1	15
113	Impact of normalization methods on high-throughput screening data with high hit rates and drug testing with dose–response data. Bioinformatics, 2015, 31, 3815-3821.	4.1	31
114	Relevance Rank Platform (RRP) for Functional Filtering of High Content Protein–Protein Interaction Data*. Molecular and Cellular Proteomics, 2015, 14, 3274-3283.	3.8	19
115	Systematic Mapping of Kinase Addiction Combinations in Breast Cancer Cells by Integrating Drug Sensitivity and Selectivity Profiles. Chemistry and Biology, 2015, 22, 1144-1155.	6.0	22
116	Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature, 2015, 519, 102-105.	27.8	207
117	Rational Polypharmacology: Systematically Identifying and Engaging Multiple Drug Targets To Promote Axon Growth. ACS Chemical Biology, 2015, 10, 1939-1951.	3.4	58
118	KIFC1 is a novel potential therapeutic target for breast cancer. Cancer Biology and Therapy, 2015, 16, 1316-1322.	3.4	76
119	Searching for Drug Synergy in Complex Dose–Response Landscapes Using an Interaction Potency Model. Computational and Structural Biotechnology Journal, 2015, 13, 504-513.	4.1	485
120	8-Chloro-Adenosine Inhibits Molecular Poor-Risk Acute Myeloid Leukemia (AML) and Leukemic Stem Cells (LSC) Growth Via Novel RNA- and ATP-Directed Mechanisms: A Novel Therapeutic Approach for AML. Blood, 2015, 126, 792-792.	1.4	2
121	Abstract P6-02-01: Identification of subgroups of triple negative breast cancer cells with selective responses to mTOR, CDK, mitotic and proteasome inhibitors. , 2015, , .		0
122	Abstract 3746: Novel therapeutic possibilities for chemorefractory ovarian cancer patients identified by functional ex vivo drug sensitivity testing of primary cells from ascites. , 2015, , .		1
123	Abstract 5328: Protein phosphatase 2A activity is a major determinant of therapy response in cancer cells. , 2015, , .		0
124	Abstract 1700: Dasatinib and everolimus show synergistic growth inhibition with paclitaxel in an ovarian granulosa cell tumor model. , 2015, , .		1
125	Abstract POSTER-TECH-1111: High-throughput drug sensitivity and resistance testing of ovarian cancer cell lines provides useful strategy for assessing drug repositioning and therapeutic possibilities of emerging drugs. , 2015, , .		0
126	Abstract 676: Axitinib targets gatekeeper-mutant BCR-ABL1(T315I)-driven leukemia in a distinct and selective fashion. , 2015, , .		0

#	Article	IF	CITATIONS
127	BCL2-Inhibitors Target a Major Group of Newly-Diagnosed and Relapsed/Refractory Acute Myeloid Leukemia Ex Vivo. Blood, 2015, 126, 2462-2462.	1.4	0
128	Subgroups of T-Cell Prolymphocytic Leukemia (T-PLL) Discovered By High-Throughput Ex Vivo Drug Testing and Genetic Profiling. Blood, 2015, 126, 315-315.	1.4	0
129	JAK1/2 and BCL2 Inhibitors Synergize to Counter-Act Bone Marrow Stromal Cell-Induced Protection of AML. Blood, 2015, 126, 867-867.	1.4	0
130	Bioluminescent Cell-Based NAD(P)/NAD(P)H Assays for Rapid Dinucleotide Measurement and Inhibitor Screening. Assay and Drug Development Technologies, 2014, 12, 514-526.	1.2	23
131	Antifungal Application of Nonantifungal Drugs. Antimicrobial Agents and Chemotherapy, 2014, 58, 1055-1062.	3.2	65
132	Identification of structural features in chemicals associated with cancer drug response: a systematic data-driven analysis. Bioinformatics, 2014, 30, i497-i504.	4.1	33
133	Utilization of in situ ELISA method for examining Trk receptor phosphorylation in cultured cells. Journal of Neuroscience Methods, 2014, 222, 142-146.	2.5	17
134	Global Human-Kinase Screening Identifies Therapeutic Host Targets against Influenza. Journal of Biomolecular Screening, 2014, 19, 936-946.	2.6	9
135	Making Sense of Large-Scale Kinase Inhibitor Bioactivity Data Sets: A Comparative and Integrative Analysis. Journal of Chemical Information and Modeling, 2014, 54, 735-743.	5.4	284
136	Integrative and Personalized QSAR Analysis in Cancer by Kernelized Bayesian Matrix Factorization. Journal of Chemical Information and Modeling, 2014, 54, 2347-2359.	5.4	101
137	A community effort to assess and improve drug sensitivity prediction algorithms. Nature Biotechnology, 2014, 32, 1202-1212.	17.5	653
138	Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Scientific Reports, 2014, 4, 5193.	3.3	243
139	The High Throughput Biomedicine Unit at the Institute for Molecular Medicine Finland: High Throughput Screening Meets Precision Medicine. Combinatorial Chemistry and High Throughput Screening, 2014, 17, 377-386.	1.1	9
140	Abstract 982: Analysis of clonal evolution of leukemia in vivo following novel targeted treatments. , 2014, , .		0
141	Abstract 4763: The tyrosine kinase inhibitor axitinib targets T315I gatekeeper-mutant Philadelphia chromosome-positive leukemiasin vitroandin vivo. , 2014, , .		0
142	Abstract 5384: Systematic high-throughput drug sensitivity and resistance testing (DSRT) of ovarian cancer cell lines indicates novel therapeutic possibilities with existing and emerging drugs. , 2014, , .		0
143	Abstract 4184: Drug set enrichment analysis : A computational approach to identify functional drug sets. , 2014, , .		0
144	Discovery of Novel Drug Sensitivities in T-Prolymphocytic Leukemia (T-PLL) By High-Throughput Ex Vivo Drug Testing and Genetic Profiling. Blood, 2014, 124, 917-917.	1.4	0

#	Article	IF	CITATIONS
145	Stroma-Derived Factors Significantly Impact the Drug Response Profiles of Patient-Derived Primary AML Cells: Implications for Drug Sensitivity Testing. Blood, 2014, 124, 3505-3505.	1.4	0
146	Integration of Ex Vivo Drug Testing and in-Depth Molecular Profiling Reveals Oncogenic Signaling Pathways and Novel Therapeutic Strategies for Multiple Myeloma. Blood, 2014, 124, 2046-2046.	1.4	3
147	Analysis of Clonal Evolution in Chemorefractory Acute Myeloid Leukemia from Diagnosis to Relapse. Blood, 2014, 124, 1022-1022.	1.4	0
148	Drug Sensitivity Profiling Identifies Drugs for Targeting Constitutively Active Mutant STAT3 and Mutant STAT5B Positive Malignancies. Blood, 2014, 124, 1771-1771.	1.4	0
149	AML Specific Targeted Drugs Identified By Drug Sensitivity and Resistance Testing: Comparison of Ex Vivo Patient Cells with in Vitro Cell Lines. Blood, 2014, 124, 2163-2163.	1.4	1
150	A Profound Biological Difference of Chronic and Blast Phase Chronic Myeloid Leukemia in Ex Vivo Drug Responses. Blood, 2014, 124, 3139-3139.	1.4	0
151	Individualized Systems Medicine Strategy to Tailor Treatments for Patients with Chemorefractory Acute Myeloid Leukemia. Cancer Discovery, 2013, 3, 1416-1429.	9.4	334
152	A Chemical Proteomics Approach to Profiling the ATP-binding Proteome of Mycobacterium tuberculosis. Molecular and Cellular Proteomics, 2013, 12, 1644-1660.	3.8	41
153	Target Inhibition Networks: Predicting Selective Combinations of Druggable Targets to Block Cancer Survival Pathways. PLoS Computational Biology, 2013, 9, e1003226.	3.2	84
154	Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood, 2013, 121, 4541-4550.	1.4	252
155	Abstract 5588: Functional drug sensitivity and resistance profiling of AML patient cells defines a disease-specific combination of druggable signal addictions , 2013, , .		0
156	Abstract A34: Development of a drug sensitivity testing pipeline towards the establishment of precision medicine for ovarian cancer. , 2013, , .		0
157	Abstract B21: Characterization of primary high-grade serous ovarian cancer cell lines: Cell line and growth condition specific differences in stem cell marker expression and high-throughput drug screening. , 2013, , .		0
158	Stromal Cell Supported High-Throughput Drug Testing Of Primary Leukemia Cells For Comprehensive Assessment Of Sensitivity To Novel Therapies. Blood, 2013, 122, 1668-1668.	1.4	0
159	Primary T-Prolymphocytic Leukemia (T-PLL) Cells Are Sensitive To BCL-2 and HDAC Inhibitors: Results From High-Throughput Ex Vivo Drug Testing. Blood, 2013, 122, 3828-3828.	1.4	0
160	Identification Of AML Subtype-Selective Drugs By Functional Ex Vivo Drug Sensitivity and Resistance Testing and Genomic Profiling. Blood, 2013, 122, 482-482.	1.4	0
161	High-Throughput Drug Sensitivity and Resistance Testing (DSRT) Platform Reveals Novel Candidate Drugs For Advanced Phase BCR-ABL1-Positive Leukemia. Blood, 2013, 122, 2719-2719.	1.4	0
162	Somatic <i>STAT3</i> Mutations in Large Granular Lymphocytic Leukemia. New England Journal of Medicine, 2012, 366, 1905-1913.	27.0	681

#	Article	IF	CITATIONS
163	Comprehensive data-driven analysis of the impact of chemoinformatic structure on the genome-wide biological response profiles of cancer cells to 1159 drugs. BMC Bioinformatics, 2012, 13, 112.	2.6	16
164	Abstract 3175: Genomic and transcriptomic data integration in chronic myelomonocytic leukemia reveals a novel fusion gene involving onco-miR-125b-2. , 2012, , .		3
165	Abstract 4580: Personalized treatment selection for therapy-resistant AML by integrating ex-vivo drug sensitivity and resistance testing (DSRT) as well as serial genomic, transcriptomic and phosphoproteomic profiling. , 2012, , .		1
166	Abstract 5067: Exome sequencing reveals both DNA sequence and copy number changes in AML: Potential driver changes and mechanisms of drug resistance revealed from serial samples from the same patients. , 2012, , .		1
167	Discovery of STAT5b Mutations and Small Subclones of STAT3 Mutations in Large Granular Lymphocytic (LGL) Leukemia. Blood, 2012, 120, 871-871.	1.4	2
168	Abstract 895: Quantitative drug sensitivity and resistance testing (DSRT) of primary ex vivo AML blasts highlights mTOR and MEK as potential key molecular driver signals of therapeutic significance. , 2012, ,		0
169	Abstract 3188: Development of a cancer pharmacopeia-wideex-vivodrug sensitivity and resistance testing (DSRT) platform for AML: Towards individually optimized therapy and improved understanding of drug resistance patterns. , 2012, , .		Ο
170	High-Throughput Ex Vivo Drug Sensitivity and Resistance Testing (DSRT) Integrated with Deep Genomic and Molecular Profiling Reveal New Therapy Options with Targeted Drugs in Subgroups of Relapsed Chemorefractory AML. Blood, 2012, 120, 288-288.	1.4	1
171	Identification of novel small molecule activators of nuclear factorâ€îºb with neuroprotective action via highâ€ŧhroughput screening. Journal of Neuroscience Research, 2011, 89, 58-72.	2.9	18
172	Development of a Cancer Pharmacopeia-Wide Ex-Vivo Drug Sensitivity and Resistance Testing (DSRT) Platform: Identification of MEK and mTOR As Patient-Specific Molecular Drivers of Adult AML and Potent Therapeutic Combinations with Dasatinib. Blood, 2011, 118, 2487-2487.	1.4	0
173	Recurrent Missense Mutations in the STAT3 Gene in LGL Leukemia Provide Insights to Pathogenetic Mechanisms and Suggest Potential Diagnostic and Therapeutic Applications. Blood, 2011, 118, 936-936.	1.4	6
174	A Highâ€Throughput Screen for Chemical Inhibitors of Exocytic Transport in Yeast. ChemBioChem, 2010, 11, 1291-1301.	2.6	7
175	MLK3 Limits Activated Gαq Signaling to Rho by Binding to p63RhoGEF. Molecular Cell, 2008, 32, 43-56.	9.7	50
176	A novel role for Lsc/p115 RhoGEF and LARG in regulating RhoA activity downstream of adhesion to fibronectin. Journal of Cell Science, 2007, 120, 3989-3998.	2.0	132
177	Analysis of Activated GAPs and GEFs in Cell Lysates. Methods in Enzymology, 2006, 406, 425-437.	1.0	179
178	The Ras superfamily at a glance. Journal of Cell Science, 2005, 118, 843-846.	2.0	1,222
179	p68RacGAP Is a Novel GTPase-activating Protein That Interacts with Vascular Endothelial Zinc Finger-1 and Modulates Endothelial Cell Capillary Formation. Journal of Biological Chemistry, 2004, 279, 17963-17972.	3.4	26
180	SGEF, a RhoG Guanine Nucleotide Exchange Factor that Stimulates Macropinocytosis. Molecular Biology of the Cell, 2004, 15, 3309-3319.	2.1	97

#	ARTICLE	IF	CITATIONS
181	Rho-family GTPases: it's not only Rac and Rho (and I like it). Journal of Cell Science, 2004, 117, 1301-1312.	2.0	524
182	Rho and Rac Take Center Stage. Cell, 2004, 116, 167-179.	28.9	1,634
183	Integrin signaling to the actin cytoskeleton. Current Opinion in Cell Biology, 2003, 15, 572-582.	5.4	450
184	Rnd Proteins Function as RhoA Antagonists by Activating p190 RhoGAP. Current Biology, 2003, 13, 1106-1115.	3.9	222
185	Serine Phosphorylation Negatively Regulates RhoA in Vivo. Journal of Biological Chemistry, 2003, 278, 19023-19031.	3.4	277
186	RhoG Signals in Parallel with Rac1 and Cdc42. Journal of Biological Chemistry, 2002, 277, 47810-47817.	3.4	91
187	Polymerization of Type I and III Collagens Is Dependent On Fibronectin and Enhanced By Integrins α11β1and α2β1. Journal of Biological Chemistry, 2002, 277, 37377-37381.	3.4	315
188	XPLN, a Guanine Nucleotide Exchange Factor for RhoA and RhoB, But Not RhoC. Journal of Biological Chemistry, 2002, 277, 42964-42972.	3.4	121
189	Leukemia-associated Rho Guanine Nucleotide Exchange Factor, a Dbl Family Protein Found Mutated in Leukemia, Causes Transformation by Activation of RhoA. Journal of Biological Chemistry, 2001, 276, 27145-27151.	3.4	112
190	The Cytoplasmic Tyrosines of Integrin Subunit β1 Are Involved in Focal Adhesion Kinase Activation. Molecular and Cellular Biology, 2000, 20, 5758-5765.	2.3	87
191	Expression of Integrin Subunit β1B in Integrin β1-Deficient GD25 Cells Does Not Interfere with αVβ3 Functions. Experimental Cell Research, 2000, 254, 55-63.	2.6	52
192	β1 integrin promotes but is not essential for metastasis of ras-myc transformed fibroblasts. Oncogene, 1999, 18, 3852-3861.	5.9	24
193	DNA microfiltration assay: a simple technique for detecting DNA damage in mammalian cells. Carcinogenesis, 1994, 15, 137-139.	2.8	13
194	Phenotypic Screening Combined with Machine Learning for Efficient Identification of Breast Cancer-Selective Therapeutic Targets. SSRN Electronic Journal, 0, , .	0.4	0