Thomas V Riley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3042309/publications.pdf

Version: 2024-02-01

81900 74163 6,837 162 39 75 citations g-index h-index papers 169 169 169 6049 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genetically related <i>Clostridium difficile</i> from water sources and human <scp>CDI</scp> cases revealed by wholeâ€genome sequencing. Environmental Microbiology, 2022, 24, 1221-1230.	3.8	7
2	Antimicrobial-resistant Bacteroides fragilis in Thailand and their inhibitory effect inÂvitro on the growth of Clostridioides difficile. Anaerobe, 2022, 73, 102505.	2.1	1
3	<i>Clostridioides difficile</i> infection and One Health: an equine perspective. Environmental Microbiology, 2022, 24, 985-997.	3.8	7
4	Linkage study of surveillance and hospital admission data to investigate Clostridium difficile infection in hospital patients in Perth, Western Australia. Anaerobe, 2022, 74, 102528.	2.1	3
5	Clostridioides (Clostridium) difficile isolated from paediatric patients in Western Australia 2019–2020. Pathology, 2022, , .	0.6	2
6	Ridinilazole: a novel, narrow-spectrum antimicrobial agent targeting Clostridium (Clostridioides) difficile. Letters in Applied Microbiology, 2022, 75, 526-536.	2.2	6
7	Whole-genome sequencing links Clostridium (Clostridioides) difficile in a single hospital to diverse environmental sources in the community. Journal of Applied Microbiology, 2022, 133, 1156-1168.	3.1	13
8	Development of 1,2,4-Oxadiazole Antimicrobial Agents to Treat Enteric Pathogens within the Gastrointestinal Tract. ACS Omega, 2022, 7, 6737-6759.	3.5	3
9	Clostridioides difficile infection in Africa: A narrative review. Anaerobe, 2022, 74, 102549.	2.1	7
10	Clostridioides (Clostridium) difficile in children with diarrhoea in Vietnam. Anaerobe, 2022, , 102550.	2.1	4
11	Esculin hydrolysis negative and TcdA-only producing strains of <i>Clostridium (Clostridioides) difficile</i> from the environment in Western Australia. Journal of Applied Microbiology, 2022, 133, 1183-1196.	3.1	5
12	Global evolutionary dynamics and resistome analysis of Clostridioides difficile ribotype 017. Microbial Genomics, 2022, 8, .	2.0	4
13	Evaluation of the antimicrobial activity of ridinilazole and six comparators against Chinese, Japanese and South Korean strains of <i>Clostridioides difficile</i> Journal of Antimicrobial Chemotherapy, 2021, 76, 967-972.	3.0	4
14	Molecular Epidemiology of <i>Clostridioides difficile</i> Infections in Children. Journal of the Pediatric Infectious Diseases Society, 2021, 10, S34-S40.	1.3	7
15	Positional Isomers of Biphenyl Antimicrobial Peptidomimetic Amphiphiles. ACS Medicinal Chemistry Letters, 2021, 12, 413-419.	2.8	7
16	Antibiotics and healthcare facility-associated <i>Clostridioides difficile </i> infection: systematic review and meta-analysis 2020 update. Journal of Antimicrobial Chemotherapy, 2021, 76, 1676-1688.	3.0	27
17	Can sequencing improve the diagnosis and management of Clostridioides difficile infection?. Expert Review of Molecular Diagnostics, 2021, 21, 429-431.	3.1	1
18	Antimicrobial resistance surveillance of <i>Clostridioides difficile</i> in Australia, 2015–18. Journal of Antimicrobial Chemotherapy, 2021, 76, 1815-1821.	3.0	14

#	Article	lF	Citations
19	Molecular Characterization of, and Antimicrobial Resistance in, ⟨i⟩Clostridioides difficile⟨/i⟩ from Thailand, 2017–2018. Microbial Drug Resistance, 2021, 27, 1505-1512.	2.0	13
20	Major genetic discontinuity and novel toxigenic species in Clostridioides difficile taxonomy. ELife, 2021, 10, .	6.0	50
21	Cationic Peptidomimetic Amphiphiles Having a N-Aryl- or N-Naphthyl-1,2,3-Triazole Core Structure Targeting Clostridioides (Clostridium) difficile: Synthesis, Antibacterial Evaluation, and an In Vivo C. difficile Infection Model. Antibiotics, 2021, 10, 913.	3.7	5
22	Complete Genome Assemblies of Three Highly Prevalent, Toxigenic Clostridioides difficile Strains Causing Health Care-Associated Infections in Australia. Microbiology Resource Announcements, 2021, 10, e0059921.	0.6	1
23	Antimicrobial resistance in Clostridioides difficile. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 2459-2478.	2.9	35
24	A species-wide genetic atlas of antimicrobial resistance in Clostridioides difficile. Microbial Genomics, 2021, 7, .	2.0	8
25	<i>Clostridioides difficile</i> infection in the Asia-Pacific region. Emerging Microbes and Infections, 2020, 9, 42-52.	6.5	47
26	Antimicrobial resistance in <i>Clostridium difficile</i> ribotype 017. Expert Review of Anti-Infective Therapy, 2020, 18, 17-25.	4.4	28
27	High Prevalence of Clostridium difficile in Home Gardens in Western Australia. Applied and Environmental Microbiology, 2020, 87, .	3.1	14
28	Laboratory-Based Surveillance of Clostridium difficile Infection in Australian Health Care and Community Settings, 2013 to 2018. Journal of Clinical Microbiology, 2020, 58, .	3.9	16
29	Clostridium difficile in soil conditioners, mulches and garden mixes with evidence of a clonal relationship with historical food and clinical isolates. Environmental Microbiology Reports, 2020, 12, 672-680.	2.4	13
30	Genomic basis of antimicrobial resistance in non-toxigenic Clostridium difficile in Southeast Asia. Anaerobe, 2020, 66, 102290.	2.1	16
31	One Health: the global challenge of Clostridium difficile infection. Microbiology Australia, 2020, 41, 23.	0.4	5
32	Antimicrobial Susceptibilities of Clostridium difficile Isolates from 12 Asia-Pacific Countries in 2014 and 2015. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	26
33	Mild or Malign: Clinical Characteristics and Outcomes of Clostridium difficile Infection in Thailand. Journal of Clinical Microbiology, 2020, 58, .	3.9	8
34	Adaptation of host transmission cycle during Clostridium difficile speciation. Nature Genetics, 2019, 51, 1315-1320.	21.4	41
35	Microbiological evaluation of the ability of the DEKO-190 Washer/Disinfector to remove Clostridium difficile spores from bedpan surfaces. Infection, Disease and Health, 2019, 24, 208-211.	1.1	1
36	Genomic Delineation of Zoonotic Origins of Clostridium difficile. Frontiers in Public Health, 2019, 7, 164.	2.7	61

3

#	Article	IF	CITATIONS
37	High prevalence of Clostridium difficile in soil, mulch and lawn samples from the grounds of Western Australian hospitals. Anaerobe, 2019, 60, 102065.	2.1	14
38	Phenotypic characterisation of Clostridium difficile PCR ribotype 251, an emerging multi-locus sequence type clade 2 strain in Australia. Anaerobe, 2019, 60, 102066.	2.1	9
39	Different molecular characteristics and antimicrobial resistance profiles of <i>Clostridium difficile</i> in the Asia-Pacific region. Emerging Microbes and Infections, 2019, 8, 1553-1562.	6.5	17
40	Molecular epidemiology of Clostridium difficile isolated from piglets. Veterinary Microbiology, 2019, 237, 108408.	1.9	5
41	<i>Clostridium difficile</i> ribotype 017 – characterization, evolution and epidemiology of the dominant strain in Asia. Emerging Microbes and Infections, 2019, 8, 796-807.	6.5	61
42	Evolutionary and Genomic Insights into <i>Clostridioides difficile</i> Sequence Type 11: a Diverse Zoonotic and Antimicrobial-Resistant Lineage of Global One Health Importance. MBio, 2019, 10, .	4.1	73
43	An environmental cleaning bundle and health-care-associated infections in hospitals (REACH): a multicentre, randomised trial. Lancet Infectious Diseases, The, 2019, 19, 410-418.	9.1	86
44	Cationic biaryl 1,2,3-triazolyl peptidomimetic amphiphiles targeting Clostridioides (Clostridium) difficile: Synthesis, antibacterial evaluation and an inÂvivo C. difficile infection model. European Journal of Medicinal Chemistry, 2019, 170, 203-224.	5.5	17
45	High prevalence and diversity of tcdA-negative and tcdB-positive, and non-toxigenic, Clostridium difficile in Thailand. Anaerobe, 2019, 57, 4-10.	2.1	19
46	Cationic biaryl 1,2,3-triazolyl peptidomimetic amphiphiles: synthesis, antibacterial evaluation and preliminary mechanism of action studies. European Journal of Medicinal Chemistry, 2019, 168, 386-404.	5.5	27
47	Clostridium difficile in Asia: Opportunities for One Health Management. Tropical Medicine and Infectious Disease, 2019, 4, 7.	2.3	12
48	A series of three cases of severe Clostridium difficile infection in Australia associated with a binary toxin producing clade 2 ribotype 251 strain. Anaerobe, 2019, 55, 117-123.	2.1	14
49	The impact of antimicrobial resistance on induction, transmission and treatment of Clostridium difficile infection. Microbiology Australia, 2019, 40, 77.	0.4	1
50	1,2,4-Oxadiazole antimicrobials act synergistically with daptomycin and display rapid kill kinetics against MDR Enterococcus faecium. Journal of Antimicrobial Chemotherapy, 2018, 73, 1562-1569.	3.0	12
51	The Epidemiology of Clostridium difficile Infection in Japan: A Systematic Review. Infectious Diseases and Therapy, 2018, 7, 39-70.	4.0	40
52	Non-conventional antimicrobial and alternative therapies for the treatment of Clostridium difficile infection. Anaerobe, 2018, 49, 103-111.	2.1	14
53	Clostridium difficile Guidelines. Clinical Infectious Diseases, 2018, 67, 1639.	5.8	8
54	Evaluation of the Cepheid ® Xpert ® C.Âdifficile binary toxin (BT) diagnostic assay. Anaerobe, 2018, 51, 12-16.	2.1	3

#	Article	IF	Citations
55	Changes in knowledge and attitudes of hospital environmental services staff: The Researching Effective Approaches to Cleaning in Hospitals (REACH) study. American Journal of Infection Control, 2018, 46, 980-985.	2.3	29
56	High Prevalence of Toxigenic and Nontoxigenic Clostridium difficile Strains in Malaysia. Journal of Clinical Microbiology, 2018, 56, .	3.9	24
57	Effect of natural products on the production and activity of Clostridium difficile toxins in vitro. Scientific Reports, 2018, 8, 15735.	3.3	16
58	Antimicrobial susceptibility of Clostridium difficile isolated from food and environmental sources in Western Australia. International Journal of Antimicrobial Agents, 2018, 52, 411-415.	2.5	22
59	Diverse bacterial species contribute to antibiotic-associated diarrhoea and gastrointestinal damage. Journal of Infection, 2018, 77, 417-426.	3.3	19
60	Antimicrobial resistance in large clostridial toxin-negative, binary toxin-positive Clostridium difficile ribotypes. Anaerobe, 2018, 54, 55-60.	2.1	11
61	Spectrum of antibacterial activity and mode of action of a novel tris-stilbene bacteriostatic compound. Scientific Reports, 2018, 8, 6912.	3.3	12
62	25â€Hydroxyvitamin D Concentrations and <i>Clostridium difficile</i> Infection: A Metaâ€Analysis. Journal of Parenteral and Enteral Nutrition, 2017, 41, 890-895.	2.6	15
63	Burden of Clostridium difficile infection: Associated hospitalization in a cohort of middle-aged and older adults. American Journal of Infection Control, 2017, 45, 508-511.	2.3	20
64	High prevalence of toxigenic Clostridium difficile in public space lawns in Western Australia. Scientific Reports, 2017, 7, 41196.	3.3	46
65	Laboratory-based surveillance of Clostridium difficile strains circulating in the Australian healthcare setting in 2012. Pathology, 2017, 49, 309-313.	0.6	24
66	Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology. Infection, Genetics and Evolution, 2017, 49, 1-11.	2.3	89
67	Community-associated Clostridium difficile infection in emergency department patients in Western Australia. Anaerobe, 2017, 48, 121-125.	2.1	22
68	Antimicrobial susceptibility of Clostridium difficile isolated in Thailand. Antimicrobial Resistance and Infection Control, 2017, 6, 58.	4.1	25
69	Comparison of Clostridium difficile Ribotypes Circulating in Australian Hospitals and Communities. Journal of Clinical Microbiology, 2017, 55, 216-225.	3.9	23
70	Prevalence of binary toxin positive Clostridium difficile in diarrhoeal humans in the absence of epidemic ribotype 027. PLoS ONE, 2017, 12, e0187658.	2.5	11
71	Clostridium difficile infection in the Lao People's Democratic Republic: first isolation and review of the literature. BMC Infectious Diseases, 2017, 17, 635.	2.9	8
72	Epidemiology of Clostridium difficile in infants in Oxfordshire, UK: Risk factors for colonization and carriage, and genetic overlap with regional C. difficile infection strains. PLoS ONE, 2017, 12, e0182307.	2.5	82

#	Article	IF	Citations
73	Community-AcquiredClostridium difficileInfection, Queensland, Australia. Emerging Infectious Diseases, 2016, 22, 1659-1661.	4.3	6
74	Clostridium difficile Infections amongst Patients with Haematological Malignancies: A Data Linkage Study. PLoS ONE, 2016, 11, e0157839.	2.5	22
75	Epidemiology and Risk Factors for Community-Associated Clostridium difficile Infection: A Narrative Review. Infectious Diseases and Therapy, 2016, 5, 231-251.	4.0	59
76	<i>Clostridium difficile</i> clade 5 in Australia: antimicrobial susceptibility profiling of PCR ribotypes of human and animal origin. Journal of Antimicrobial Chemotherapy, 2016, 71, 2213-2217.	3.0	29
77	Laboratory-based surveillance of Clostridium difficile circulating in Australia, September – November 2010. Pathology, 2016, 48, 257-260.	0.6	20
78	<i>Clostridium difficile</i> Infection in Production Animals and Avian Species: A Review. Foodborne Pathogens and Disease, 2016, 13, 647-655.	1.8	43
79	A Phenotypically Silent <i>vanB2</i> Operon Carried on a Tn <i>1549</i> -Like Element in Clostridium difficile. MSphere, 2016, 1, .	2.9	26
80	Aboriginal and non-Aboriginal children in Western Australia carry different serotypes of pneumococci with different antimicrobial susceptibility profiles. Pneumonia (Nathan Qld), 2016, 8, 15.	6.1	6
81	Comparison of the Vidas C.Âdifficile and Quik Chek-60 glutamate dehydrogenase assays for the detection of Clostridium difficile in faecal samples. Pathology, 2016, 48, 506-508.	0.6	2
82	Clostridium difficileâ€"Diagnostic and Clinical Challenges. Clinical Chemistry, 2016, 62, 310-314.	3.2	13
83	Routine detection of Clostridium difficile in Western Australia. Anaerobe, 2016, 37, 34-37.	2.1	12
84	Susceptibility of Clostridium difficile to the food preservatives sodium nitrite, sodium nitrate and sodium metabisulphite. Anaerobe, 2016, 37, 67-71.	2.1	26
85	Persistence of Clostridium difficile RT 237 infection in a Western Australian piggery. Anaerobe, 2016, 37, 62-66.	2.1	19
86	Genome Analysis of Clostridium difficile PCR Ribotype 014 Lineage in Australian Pigs and Humans Reveals a Diverse Genetic Repertoire and Signatures of Long-Range Interspecies Transmission. Frontiers in Microbiology, 2016, 7, 2138.	3.5	117
87	Human Clostridium difficile infection caused by a livestock-associated PCR ribotype 237 strain in Western Australia. JMM Case Reports, 2016, 3, e005062.	1.3	6
88	Mechanisms of hypervirulent Clostridium difficile ribotype 027 displacement of endemic strains: an epidemiological model. Scientific Reports, 2015, 5, 12666.	3.3	38
89	Asymptomatic Clostridium difficile colonization: epidemiology and clinical implications. BMC Infectious Diseases, 2015, 15, 516.	2.9	159
90	Clostridium difficile Infection Seasonality: Patterns across Hemispheres and Continents – A Systematic Review. PLoS ONE, 2015, 10, e0120730.	2.5	37

#	Article	IF	Citations
91	Molecular Epidemiology of Clostridium difficile Infection in a Large Teaching Hospital in Thailand. PLoS ONE, 2015, 10, e0127026.	2.5	23
92	Nationwide Surveillance Study of Clostridium difficile in Australian Neonatal Pigs Shows High Prevalence and Heterogeneity of PCR Ribotypes. Applied and Environmental Microbiology, 2015, 81, 119-123.	3.1	76
93	Researching effective approaches to cleaning in hospitals: protocol of the REACH study, a multi-site stepped-wedge randomised trial. Implementation Science, 2015, 11, 44.	6.9	28
94	Clostridium difficile infection in Thailand. International Journal of Antimicrobial Agents, 2015, 45, 1-7.	2.5	17
95	Evaluation of the Cepheid Xpert C. difficile/Epiand Meridian Bioscienceillumigene C. difficile Assays for Detecting Clostridium difficile Ribotype 033 Strains. Journal of Clinical Microbiology, 2015, 53, 973-975.	3.9	17
96	Diversity and Evolution in the Genome of Clostridium difficile. Clinical Microbiology Reviews, 2015, 28, 721-741.	13.6	253
97	Binaphthyl-1,2,3-triazole peptidomimetics with activity against Clostridium difficile and other pathogenic bacteria. Organic and Biomolecular Chemistry, 2015, 13, 5743-5756.	2.8	29
98	Comorbidities, Exposure to Medications, and the Risk of Community-Acquired <i>Clostridium difficile</i> Infection: A Systematic Review and Meta-analysis. Infection Control and Hospital Epidemiology, 2015, 36, 132-141.	1.8	123
99	Molecular characterization and antimicrobial susceptibilities of Clostridium difficile clinical isolates from Victoria, Australia. Anaerobe, 2015, 34, 80-83.	2.1	8
100	Evaluation of the BD Max Cdiff assay for the detection of toxigenic Clostridium difficile in human stool specimens. Pathology, 2015, 47, 165-168.	0.6	20
101	Molecular methods for detecting and typing of Clostridium difficile. Pathology, 2015, 47, 211-218.	0.6	21
102	Surveillance for antimicrobial resistance in Australian isolates of <i>Clostridium difficile </i> , 2013–14. Journal of Antimicrobial Chemotherapy, 2015, 70, 2992-2999.	3.0	49
103	Incorrect diagnosis of Clostridium difficile infection in a university hospital in Japan. Journal of Infection and Chemotherapy, 2015, 21, 718-722.	1.7	30
104	Synthesis and antimicrobial activity of binaphthyl-based, functionalized oxazole and thiazole peptidomimetics. Organic and Biomolecular Chemistry, 2015, 13, 10813-10824.	2.8	30
105	Infection with Toxin A-Negative, Toxin B-Negative, Binary Toxin-Positive Clostridium difficile in a Young Patient with Ulcerative Colitis. Journal of Clinical Microbiology, 2015, 53, 3702-3704.	3.9	36
106	Synthesis of Mono and Bis[60]fullereneâ€Based Dicationic Peptoids. European Journal of Organic Chemistry, 2015, 2015, 195-201.	2.4	10
107	Community-acquired Clostridium difficile infection and Australian food animals. Microbiology Australia, 2015, 36, 111.	0.4	6
108	Two cases of Clostridium difficile infection in unrelated oncology patients attributable to a single clone of C. difficile PCR ribotype 126. JMM Case Reports, 2015, 2, .	1.3	7

#	Article	IF	Citations
109	Increasing incidence of Clostridium difficile infection, Australia, 2011–2012. Medical Journal of Australia, 2014, 200, 272-276.	1.7	96
110	Laboratory Detection of Clostridium difficile in Piglets in Australia. Journal of Clinical Microbiology, 2014, 52, 3856-3862.	3.9	24
111	Assessing control bundles for <i>Clostridium difficile</i> : a review and mathematical model. Emerging Microbes and Infections, 2014, 3, 1-8.	6.5	23
112	The Complexity and Diversity of the Pathogenicity Locus in Clostridium difficile Clade 5. Genome Biology and Evolution, 2014, 6, 3159-3170.	2.5	31
113	Evolutionary History of the Clostridium difficile Pathogenicity Locus. Genome Biology and Evolution, 2014, 6, 36-52.	2.5	190
114	Emergence of a Ribotype 244 Strain of Clostridium difficile Associated With Severe Disease and Related to the Epidemic Ribotype 027 Strain. Clinical Infectious Diseases, 2014, 58, 1723-1730.	5.8	111
115	Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy, 2014, 69, 881-891.	3.0	461
116	The changes of PCR ribotype and antimicrobial resistance of Clostridium difficile in a tertiary care hospital over 10 years. Journal of Medical Microbiology, 2014, 63, 819-823.	1.8	43
117	A population-based spatio-temporal analysis of Clostridium difficile infection in Queensland, Australia over a 10-year period. Journal of Infection, 2014, 69, 447-455.	3.3	21
118	Surveillance snapshot of Clostridium difficile infection in hospitals across Queensland detects binary toxin producing ribotype UK 244. Communicable Diseases Intelligence, 2014, 38, E279-84.	0.5	6
119	Epidemiology of Clostridium difficile infection in Asia. Antimicrobial Resistance and Infection Control, 2013, 2, 21.	4.1	186
120	Inspiration from Old Dyes: Tris(stilbene) Compounds as Potent Gramâ€Positive Antibacterial Agents. Chemistry - A European Journal, 2013, 19, 17980-17988.	3.3	23
121	Prevalence of Clostridium difficile colonization among healthcare workers. BMC Infectious Diseases, 2013, 13, 459.	2.9	26
122	Clostridium difficile exposure as an insidious source of infection in healthcare settings: an epidemiological model. BMC Infectious Diseases, 2013, 13, 376.	2.9	35
123	Phage ϕC2 Mediates Transduction of Tn <i>6215</i> , Encoding Erythromycin Resistance, between Clostridium difficile Strains. MBio, 2013, 4, e00840-13.	4.1	79
124	Cross-Sectional Study Reveals High Prevalence of Clostridium difficile Non-PCR Ribotype 078 Strains in Australian Veal Calves at Slaughter. Applied and Environmental Microbiology, 2013, 79, 2630-2635.	3.1	79
125	Comparison of ChromID C. difficile agar and cycloserine-cefoxitin-fructose agar for the recovery of Clostridium difficile. Pathology, 2013, 45, 495-500.	0.6	13
126	Prevalence of Gastrointestinal Clostridium difficile Carriage in Australian Sheep and Lambs. Applied and Environmental Microbiology, 2013, 79, 5689-5692.	3.1	39

#	Article	IF	Citations
127	Isolation of Clostridium difficile from faecal specimens $\hat{a}\in$ a comparison of chromID C. difficile agar and cycloserine-cefoxitin-fructose agar. Journal of Medical Microbiology, 2013, 62, 1423-1427.	1.8	25
128	Novel Molecular Type of Clostridium difficilein Neonatal Pigs, Western Australia. Emerging Infectious Diseases, 2013, 19, 790-2.	4.3	39
129	Severe Clostridium difficile infection in New Zealand associated with an emerging strain, PCR-ribotype 244. New Zealand Medical Journal, 2013, 126, 9-14.	0.5	10
130	Clostridium difficile Infection in Humans and Piglets: A †One Health' Opportunity. Current Topics in Microbiology and Immunology, 2012, 365, 299-314.	1.1	38
131	Effects of Melaleuca alternifolia (Tea Tree) Essential Oil and the Major Monoterpene Component Terpinen-4-ol on the Development of Single- and Multistep Antibiotic Resistance and Antimicrobial Susceptibility. Antimicrobial Agents and Chemotherapy, 2012, 56, 909-915.	3.2	124
132	Macro and Micro Diversity of Clostridium difficile Isolates from Diverse Sources and Geographical Locations. PLoS ONE, 2012, 7, e31559.	2.5	114
133	Clostridium difficile infection: the next big thing!. Microbiology Australia, 2012, 33, 163.	0.4	2
134	The Synthesis of Fluorescent DNA Intercalator Precursors through Efficient Multiple Heck Reactions. Australian Journal of Chemistry, 2011, 64, 316.	0.9	12
135	New types of toxin A-negative, toxin B-positive strains among clinical isolates of Clostridium difficile in Australia. Journal of Medical Microbiology, 2011, 60, 1108-1111.	1.8	54
136	Clostridium difficile in horses in Australia – a preliminary study. Journal of Medical Microbiology, 2011, 60, 1188-1192.	1.8	36
137	Severe infection with Clostridium difficile PCR ribotype 027 acquired in Melbourne, Australia. Medical Journal of Australia, 2011, 194, 369-371.	1.7	47
138	Clostridium difficile laboratory testing in Australia and New Zealand: national survey results and Australasian Society for Infectious Diseases recommendations for best practice. Pathology, 2011, 43, 482-487.	0.6	30
139	Clostridium difficile PCR ribotype 027: assessing the risks of further worldwide spread. Lancet Infectious Diseases, The, 2010, 10, 395-404.	9.1	178
140	Is Clostridium difficile a threat to Australia's biosecurity?. Medical Journal of Australia, 2009, 190, 661-662.	1.7	14
141	First Australian isolation of epidemic Clostridium difficile PCR ribotype 027. Medical Journal of Australia, 2009, 190, 706-708.	1.7	65
142	Bacteremia with a large clostridial toxin-negative, binary toxin-positive strain of Clostridium difficile. Anaerobe, 2009, 15, 249-251.	2.1	34
143	Increasing Prevalence of Toxin A-Negative, Toxin B-Positive Isolates of <i>Clostridium difficile</i> in Korea: Impact on Laboratory Diagnosis. Journal of Clinical Microbiology, 2008, 46, 1116-1117.	3.9	69
144	Epidemic Clostridium difficile. Medical Journal of Australia, 2006, 185, 133-134.	1.7	20

#	Article	IF	Citations
145	Effect of phage infection on toxin production by Clostridium difficile. Journal of Medical Microbiology, 2005, 54, 129-135.	1.8	58
146	Nosocomial diarrhoea due to Clostridium difficile. Current Opinion in Infectious Diseases, 2004, 17, 323-327.	3.1	26
147	Evaluation of selective media for the isolation of Brachyspira aalborgi from human faeces. Journal of Medical Microbiology, 2003, 52, 509-513.	1.8	20
148	Antibiotics and hospital-acquired Clostridium difficile-associated diarrhoea: a systematic review. Journal of Antimicrobial Chemotherapy, 2003, 51, 1339-1350.	3.0	268
149	Clostridium difficile–Associated Diarrhea: Epidemiological Data from Western Australia Associated with a Modified Antibiotic Policy. Clinical Infectious Diseases, 2002, 35, 1457-1462.	5.8	70
150	Mechanism of Action of Melaleuca alternifolia (Tea Tree) Oil on Staphylococcus aureus Determined by Time-Kill, Lysis, Leakage, and Salt Tolerance Assays and Electron Microscopy. Antimicrobial Agents and Chemotherapy, 2002, 46, 1914-1920.	3.2	760
151	Evaluation of blood culture systems for detection of the intestinal spirochaete Brachyspira (Serpulina) pilosicoli in human blood. Journal of Medical Microbiology, 2000, 49, 1031-1036.	1.8	9
152	Penicillin resistance in laboratory isolates of Streptococcus pneumoniae, in Western Australia, 1990-1994. European Journal of Epidemiology, 1998, 14, 611-615.	5.7	6
153	<i>Legionella longbeachae</i> in Western Australian potting mix. Medical Journal of Australia, 1997, 166, 387-387.	1.7	8
154	Antibiotic-Associated Diarrhoea. Pharmacoeconomics, 1996, 10, 1-3.	3.3	21
155	"Natural―therapy for infectious diseases. Medical Journal of Australia, 1996, 164, 94-95.	1.7	13
156	Staphylococcus saprophyticus urinary tract infections: epidemiological data from Western Australia. European Journal of Epidemiology, 1996, 12, 51-54.	5.7	25
157	Community-Acquired Clostridium difficile-Associated Diarrhea. Clinical Infectious Diseases, 1995, 20, S263-S265.	5.8	79
158	The antimicrobial activity of tea tree oil. Medical Journal of Australia, 1994, 160, 236-236.	1.7	26
159	Diarrheal disease due to Clostridium difficile in general practice. Pathology, 1991, 23, 346-349.	0.6	45
160	Non-radioactive restriction fragment length polymorphism (RFLP) typing of Clostridium difficile. FEMS Microbiology Letters, 1991, 79, 269-272.	1.8	43
161	Extended spectrum cephalosporins and Clostridium difficile. Journal of Antimicrobial Chemotherapy, 1989, 23, 929-931.	3.0	52
162	Respiratory tract infections due toBranhamella catarrhalis: epidemiological data from Western Australia. Epidemiology and Infection, 1987, 99, 445-453.	2.1	37