Huilin Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3041885/publications.pdf Version: 2024-02-01

Ηυμικί Ζησιι

#	Article	IF	CITATIONS
1	Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nature Biotechnology, 2001, 19, 946-951.	17.5	913
2	A systematic approach to the analysis of protein phosphorylation. Nature Biotechnology, 2001, 19, 375-378.	17.5	742
3	A Multidimensional Chromatography Technology for In-depth Phosphoproteome Analysis. Molecular and Cellular Proteomics, 2008, 7, 1389-1396.	3.8	472
4	Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10364-10369.	7.1	378
5	Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nature Biotechnology, 2002, 20, 512-515.	17.5	372
6	Global Analyses of Sumoylated Proteins in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 32262-32268.	3.4	284
7	mTORC2 Regulates Amino Acid Metabolism in Cancer by Phosphorylation of the Cystine-Glutamate Antiporter xCT. Molecular Cell, 2017, 67, 128-138.e7.	9.7	147
8	A Proteome-wide Analysis of Kinase-Substrate Network in the DNA Damage Response. Journal of Biological Chemistry, 2010, 285, 12803-12812.	3.4	110
9	Both Decreased and Increased SRPK1 Levels Promote Cancer by Interfering with PHLPP-Mediated Dephosphorylation of Akt. Molecular Cell, 2014, 54, 378-391.	9.7	105
10	Macrophage Migration Inhibitory Factor as a Chaperone Inhibiting Accumulation of Misfolded SOD1. Neuron, 2015, 86, 218-232.	8.1	98
11	An FHA domain–mediated protein interaction network of Rad53 reveals its role in polarized cell growth. Journal of Cell Biology, 2006, 175, 743-753.	5.2	85
12	Dynamic Changes in Protein-Protein Interaction and Protein Phosphorylation Probed with Amine-reactive Isotope Tag. Molecular and Cellular Proteomics, 2005, 4, 1358-1369.	3.8	71
13	Mechanism of Dun1 Activation by Rad53 Phosphorylation in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2007, 282, 986-995.	3.4	68
14	Distinct SUMO Ligases Cooperate with Esc2 and Slx5 to Suppress Duplication-Mediated Genome Rearrangements. PLoS Genetics, 2013, 9, e1003670.	3.5	68
15	Phosphorylation-Specific MS/MS Scoring for Rapid and Accurate Phosphoproteome Analysis. Journal of Proteome Research, 2008, 7, 3373-3381.	3.7	51
16	Phosphorylation of Sae2 Mediates Forkhead-associated (FHA) Domain-specific Interaction and Regulates Its DNA Repair Function. Journal of Biological Chemistry, 2015, 290, 10751-10763.	3.4	44
17	Reconstitution of Rad53 Activation by Mec1 through Adaptor Protein Mrc1. Journal of Biological Chemistry, 2009, 284, 18593-18604.	3.4	42
18	Recruitment of a SUMO isopeptidase to rDNA stabilizes silencing complexes by opposing SUMO targeted ubiquitin ligase activity. Genes and Development, 2017, 31, 802-815.	5.9	31

Huilin Zhou

#	Article	IF	CITATIONS
19	Molecular Circuitry of the SUMO (Small Ubiquitin-like Modifier) Pathway in Controlling Sumoylation Homeostasis and Suppressing Genome Rearrangements. Journal of Biological Chemistry, 2016, 291, 8825-8835.	3.4	28
20	Multiple phosphorylation of Rad9 by CDK is required for DNA damage checkpoint activation. Cell Cycle, 2012, 11, 3792-3800.	2.6	27
21	Quantitative Protein Analysis by Solid Phase Isotope Tagging and Mass Spectrometry. , 2004, 261, 511-518.		22
22	Recruitment of the Ulp2 protease to the inner kinetochore prevents its hyper-sumoylation to ensure accurate chromosome segregation. PLoS Genetics, 2019, 15, e1008477.	3.5	20
23	SUMO orchestrates multiple alternative DNA-protein crosslink repair pathways. Cell Reports, 2021, 37, 110034.	6.4	19
24	SUMO E3 ligase Mms21 prevents spontaneous DNA damage induced genome rearrangements. PLoS Genetics, 2018, 14, e1007250.	3.5	16
25	Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain. BMC Research Notes, 2015, 8, 616.	1.4	13
26	A Method for Sporulating Budding Yeast Cells That Allows for Unbiased Identification of Kinase Substrates Using Stable Isotope Labeling by Amino Acids in Cell Culture. G3: Genes, Genomes, Genetics, 2014, 4, 2125-2135.	1.8	12
27	A Chemical and Enzymatic Approach to Study Site-Specific Sumoylation. PLoS ONE, 2015, 10, e0143810.	2.5	10
28	Binding to small ubiquitin-like modifier and the nucleolar protein Csm1 regulates substrate specificity of the Ulp2 protease. Journal of Biological Chemistry, 2018, 293, 12105-12119.	3.4	9
29	Quantitative phosphoproteomics. Cell Cycle, 2010, 9, 3479-3484.	2.6	7
30	Ctf3/CENP-I provides a docking site for the desumoylase Ulp2 at the kinetochore. Journal of Cell Biology, 2021, 220, .	5.2	4
31	Preserving Yeast Genetic Heritage through DNA Damage Checkpoint Regulation and Telomere Maintenance. Biomolecules, 2012, 2, 505-523.	4.0	3
32	Shared and distinct roles of Esc2 and Mms21 in suppressing genome rearrangements and regulating intracellular sumoylation. PLoS ONE, 2021, 16, e0247132.	2.5	3
33	A new approach to study siteâ€specific protein sumoylation (925.3). FASEB Journal, 2014, 28, 925.3.	O.5	3
34	Site-specific MCM sumoylation prevents genome rearrangements by controlling origin-bound MCM. PLoS Genetics, 2022, 18, e1010275.	3.5	1
35	FHA domain mediated protein interaction network of Dun1 identifies its novel functions in the DNA damage response. FASEB Journal, 2006, 20, A509.	0.5	0
36	Quantitative Phosphoproteomic Analysis Identifies Targets of the DNA Damage Checkpoint Kinases in Yeast. FASEB Journal, 2007, 21, A659.	0.5	0