Thierry Stoecklin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3041582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantum study of the bending relaxation of H2O by collision with H. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4426-4432.	4.4	2
2	A close coupling study of the bending relaxation of H2O by collision with He. Journal of Chemical Physics, 2021, 154, 144307.	3.0	10
3	Resolved fine and hyperfine state-to-state rate coefficients for the rotational transitions of C3N induced by collision with He. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4086-4094.	4.4	4
4	Strong ortho/para effects in the vibrational spectrum of Cl-(H2). Journal of Chemical Physics, 2021, 155, 241101.	3.0	5
5	Predissociation spectra of the 35Clâ^'(H2) complex and its isotopologue 35Clâ^'(D2). Physical Chemistry Chemical Physics, 2020, 22, 25552-25559.	2.8	5
6	Rotational relaxation of HCO+ and DCO+ by collision with H2. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4276-4281.	4.4	24
7	Rotational relaxation of H ₂ S by collision with He. Astronomy and Astrophysics, 2020, 638, A31.	5.1	2
8	Radiative Electron Attachment and Photodetachment Rate Constants for Linear Carbon Chains. ACS Earth and Space Chemistry, 2019, 3, 1556-1563.	2.7	6
9	Potential energy surface and rovibrational bound states of the H ₂ –C ₃ N ^Ⱂ van der Waals complex. Physical Chemistry Chemical Physics, 2019, 21, 2929-2937.	2.8	5
10	Rigid-Bender Close-Coupling Treatment of the Inelastic Collisions of H ₂ 0 with <i>para</i> -H ₂ . Journal of Physical Chemistry A, 2019, 123, 5704-5712.	2.5	19
11	Single-center approach for photodetachment and radiative electron attachment: Comparison with other theoretical approaches and with experimental photodetachment data. Physical Review A, 2019, 99, .	2.5	5
12	Formation of Na-containing complex molecules in the gas phase in dense molecular clouds: quantum study of the Na+Â+ÂH2 and Na+Â+ÂD2 radiative association step. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5874-5879.	4.4	7
13	Rotational transitions of C3Nâ^' induced by collision with H2. Monthly Notices of the Royal Astronomical Society, 2019, 486, 414-421.	4.4	21
14	Rotational Transitions of HOC ⁺ Induced by Collision with He at Low Temperatures. Journal of Physical Chemistry A, 2019, 123, 10990-10995.	2.5	2
15	Quantum tunneling dynamical behaviour on weakly bound complexes: the case of a CO ₂ –N ₂ dimer. Physical Chemistry Chemical Physics, 2019, 21, 3550-3557.	2.8	13
16	On the gas-phase formation of the HCO radical: accurate quantum study of the H+CO radiative association. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2545-2552.	4.4	12
17	On the gas-phase formation of the HCO ^{â^'} anion: accurate quantum study of the H ^{â^'} + CO radiative association and HCO radiative electron attachment. Faraday Discussions, 2018, 212, 101-116.	3.2	3
18	New ratecoefficients of CS in collision with para- and ortho-H2 and astrophysical implications. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1811-1817.	4.4	21

THIERRY STOECKLIN

#	Article	IF	CITATIONS
19	Complex rovibrational dynamics of the Ar·NO ⁺ complex. Physical Chemistry Chemical Physics, 2017, 19, 8152-8160.	2.8	19
20	Rotational (de-)excitation of C3Nâ^' by collision with He atoms. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4174-4179.	4.4	10
21	Interaction of rigid C3Nâ^' with He: Potential energy surface, bound states, and rotational spectrum. Journal of Chemical Physics, 2017, 146, 224310.	3.0	5
22	Rotational energy transfer in collisions between CO and Ar at temperatures from 293 to 30 K. Chemical Physics Letters, 2017, 683, 521-528.	2.6	13
23	Isotopic effects in the collision of CH+ with He. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2582-2589.	4.4	5
24	Explanation of efficient quenching of molecular ion vibrational motion by ultracold atoms. Nature Communications, 2016, 7, 11234.	12.8	30
25	Isotopic effects in the collision of HCN with He: substitution of HCN by DCN. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1317-1323.	4.4	13
26	Low temperature rate coefficients of the H + CH+ → C+ + H2 reaction: New potential energy surface and time-independent quantum scattering. Journal of Chemical Physics, 2015, 143, 114304.	3.0	22
27	Rovibrational energy transfer in the He–C3 collision: rigid bender treatment of the bending–rotation interaction and rate coefficients. Monthly Notices of the Royal Astronomical Society, 2015, 449, 3420-3425.	4.4	21
28	Potential energy surface of the CO2–N2 van der Waals complex. Journal of Chemical Physics, 2015, 142, 174301.	3.0	41
29	Rovibrational rate coefficients of NO+ in collision with He. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2986-2990.	4.4	9
30	Rovibrational energy transfer in the He-C3 collision: Potential energy surface and bound states. Journal of Chemical Physics, 2014, 140, 084316.	3.0	20
31	Rotational excitation of HCN by para- and ortho-H2. Journal of Chemical Physics, 2014, 140, 224302.	3.0	29
32	The interaction of He with vibrating HCN: Potential energy surface, bound states, and rotationally inelastic cross sections. Journal of Chemical Physics, 2013, 139, 034304.	3.0	27
33	Ro-vibrational relaxation of HCN in collisions with He: Rigid bender treatment of the bending-rotation interaction. Journal of Chemical Physics, 2013, 139, 124317.	3.0	33
34	A new <i>ab</i> â€^ <i>initio</i> potential energy surface for the collisional excitation of HCN by para- and ortho-H2. Journal of Chemical Physics, 2013, 139, 224301.	3.0	22
35	Spin-orbit quenching of the C+(2 <i>P</i>) ion by collisions with <i>para</i> and <i>ortho</i> -H2. Journal of Chemical Physics, 2013, 138, 204314.	3.0	18
36	Rotational relaxation of CS by collision with ortho- and para-H2 molecules. Journal of Chemical Physics, 2013, 139, 204304.	3.0	18

THIERRY STOECKLIN

#	Article	IF	CITATIONS
37	A new ab initio potential energy surface for the collisional excitation of O2 by H2. Physical Chemistry Chemical Physics, 2012, 14, 16458.	2.8	21
38	Prediction of the existence of the N2Hâ^' molecular anion. Journal of Chemical Physics, 2012, 136, 244302.	3.0	11
39	Explicitly correlated treatment of the Ar–NO+ cation. Journal of Chemical Physics, 2011, 135, 044312.	3.0	42
40	The interaction of MnH(X Σ7+) with He: Ab initio potential energy surface and bound states. Journal of Chemical Physics, 2010, 132, 214305.	3.0	15
41	Theoretical Sensitivity of the C(³ P) + OH(X ² Î) â†' CO(X ¹ Σ ⁺) + H(² S) Rate Constant: The Role of the Long-Range Potential. Journal of Physical Chemistry A, 2010, 114, 7494-7499.	2.5	13
42	Cross sections and low temperature rate coefficients for the H + CH+reaction: a quasiclassical trajectory study. Physical Chemistry Chemical Physics, 2007, 9, 582-590.	2.8	32
43	Electron-impact rotational and hyperfine excitation of HCN, HNC, DCN and DNC. Monthly Notices of the Royal Astronomical Society, 2007, 382, 840-848.	4.4	46
44	Comparison of the cross-sections and thermal rate constants for the reactions of C(3PJ) atoms with O2 and NO. Physical Chemistry Chemical Physics, 2000, 2, 2873-2881.	2.8	52
45	Experimental and Theoretical Kinetics for the Reaction of Al with O2at Temperatures between 23 and 295 K. Journal of Physical Chemistry A, 1997, 101, 9988-9992.	2.5	36
46	Rate constant calculations for ion–symmetric top and ion–asymmetric top reactions. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 901-908.	1.7	22
47	Predissociation spectroscopy of cold CN ^{â^'} H ₂ and CN ^{â^'} D ₂ . Molecular Physics, 0, , .	1.7	3