
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3041269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Very Gradual and Anomalous Oxidation at the Interface of Hydrogen-Intercalated Graphene/4H-SiC(0001). Journal of Physical Chemistry C, 2017, 121, 26389-26396.	3.1	1
2	Epitaxial growth of monolayer MoSe ₂ on GaAs. Applied Physics Express, 2016, 9, 115501.	2.4	17
3	Photocurrent generation of a single-gate graphene p–n junction fabricated by interfacial modification. Nanotechnology, 2015, 26, 385203.	2.6	15
4	Core-level photoelectron spectroscopy study of interface structure of hydrogen-intercalated graphene onn-type 4H-SiC(0001). Physical Review B, 2013, 88, .	3.2	12
5	Structural Instability of Transferred Graphene Grown by Chemical Vapor Deposition against Heating. Journal of Physical Chemistry C, 2013, 117, 22123-22130.	3.1	22
6	Molecular beam epitaxial growth of graphene using cracked ethylene. Journal of Crystal Growth, 2013, 378, 404-409.	1.5	2
7	Molecular beam epitaxial growth of graphene using cracked ethylene — Advantage over ethanol in growth. Diamond and Related Materials, 2013, 34, 84-88.	3.9	11
8	Formation of Graphene Nanofin Networks on Graphene/SiC(0001) by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 06FD16.	1.5	0
9	Formation of Graphene Nanofin Networks on Graphene/SiC(0001) by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 06FD16.	1.5	1
10	Study of Graphene Growth by Gas-Source Molecular Beam Epitaxy Using Cracked Ethanol: Influence of Gas Flow Rate on Graphitic Material Deposition. Japanese Journal of Applied Physics, 2011, 50, 06GE12.	1.5	8
11	Gate Operation of InAs/AlGaSb Heterostructures with an Atomic-Layer-Deposited Insulating Layer. Applied Physics Express, 2011, 4, 125702.	2.4	12
12	Molecular beam epitaxial growth of graphene and ridge-structure networks of graphene. Journal Physics D: Applied Physics, 2011, 44, 435305.	2.8	13
13	Evaluation of Few-Layer Graphene Grown by Gas-Source Molecular Beam Epitaxy Using Cracked Ethanol. E-Journal of Surface Science and Nanotechnology, 2011, 9, 58-62.	0.4	9
14	Study of Graphene Growth by Gas-Source Molecular Beam Epitaxy Using Cracked Ethanol: Influence of Gas Flow Rate on Graphitic Material Deposition. Japanese Journal of Applied Physics, 2011, 50, 06GE12.	1.5	23
15	Growth of few″ayer graphene by gasâ€source molecular beam epitaxy using cracked ethanol. Physica Status Solidi (B): Basic Research, 2010, 247, 916-920.	1.5	4
16	Thin Graphitic Structure Formation on Various Substrates by Gas-Source Molecular Beam Epitaxy Using Cracked Ethanol. Japanese Journal of Applied Physics, 2010, 49, 04DH13.	1.5	30
17	Electronic and surface properties of H-terminated diamond surface affected by NO2 gas. Diamond and Related Materials, 2010, 19, 889-893.	3.9	46
18	Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy. Physical Review B, 2009, 79, .	3.2	246

#	Article	IF	CITATIONS
19	Two-dimensional emission patterns of secondary electrons from graphene layers formed on SiC(0001). Applied Surface Science, 2008, 254, 7596-7599.	6.1	20
20	Oxide-mediated formation of α-FeSi2on Si(001) studied by X-ray adsorption near edge structure analysis using SPELEEM. Surface and Interface Analysis, 2008, 40, 1747-1750.	1.8	3
21	Hydrogen adsorption on single-walled carbon nanotubes studied by core-level photoelectron spectroscopy and Raman spectroscopy. Carbon, 2008, 46, 1903-1908.	10.3	17
22	Microscopic thickness determination of thin graphite films formed on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>SiC</mml:mi></mml:mrow>from quantized oscillation in reflectivity of low-energy electrons. Physical Review B, 2008, 77, .</mml:math 	3.2	330
23	Proper Combination of Catalyst Materials and Ethanol for High Yield in CVD Growth of Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2008, 1081, 1.	0.1	0
24	Thickness Determination of Graphene Layers Formed on SiC Using Low-Energy Electron Microscopy. E-Journal of Surface Science and Nanotechnology, 2008, 6, 107-110.	0.4	46
25	Reaction Products of Co Catalysts in Ethanol-Chemical-Vapor-Deposition Ambient at Low-Pressure Studied byin situX-Ray Photoelectron Spectroscopy. Japanese Journal of Applied Physics, 2007, 46, L148-L150.	1.5	8
26	Surface Reactions of Metal Catalysts for Carbon Nanotubes on an Oxide Thin Layer/Si Substrates Studied by in-situ Micro X-ray Adsorption Spectroscopy using SPELEEM. Materials Research Society Symposia Proceedings, 2006, 967, 1.	0.1	0
27	Surface Reactions of Metal Catalysts in Ethanol-CVD Ambient at Low-pressure Studied by in-situ Photoelectron Spectroscopy. Materials Research Society Symposia Proceedings, 2006, 963, 1.	0.1	0
28	Surface Reactions of Co on SiO2 thin layer/Si substrate Studied by LEEM and PEEM. E-Journal of Surface Science and Nanotechnology, 2006, 4, 155-160.	0.4	6
29	Beamline for angle-resolved photoemission spectroscopy at low-temperature constructed at NTT Atsugi R&D Center. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 1109-1112.	1.7	3
30	Surface and interface reactions of catalysts for carbon nanotube growth on Si substrates studied by soft X-ray photoelectron spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 24, 19-25.	2.7	12
31	Real-time analysis of a surface phase transition of GaAs (001) by core-level photoelectron spectroscopy and photoelectron diffraction. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 107-112.	1.7	2
32	Electronic structure of single-walled carbon nanotubes encapsulating potassium. Physical Review B, 2003, 67, .	3.2	52
33	Passivation-mediated growth of Co on Se, S and O rich GaAs surfaces: A potential approach to control interface crystallinity and magnetic continuity. Journal of Applied Physics, 2002, 91, 3943-3945.	2.5	7
34	Observation of Ga 3d two-hole states from GaAs surfaces. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 421-425.	1.7	4
35	Performance of the high-resolution high-flux monochromator for bending magnet beamline BL-1C at the Photon Factory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 573-576.	1.6	12
36	Surfactant-mediated control of surface morphology for Co epitaxial film on S-passivated semiconducting substrate. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 384.	1.6	8

#	Article	IF	CITATIONS
37	Modified epitaxy in Co/S/GaAs(001) and comparison with Co/GaAs(001). Journal of Applied Physics, 2001, 90, 1222-1226.	2.5	10
38	Effect of strain on the chemical bonds in InAs nanocrystals self-organized on GaAs and Se-terminated GaAs surfaces. Applied Surface Science, 2000, 162-163, 625-629.	6.1	1
39	Real-time analysis of alternating growth on GaAs(001) by core-level photoelectron spectroscopy. Applied Surface Science, 2000, 162-163, 319-325.	6.1	2
40	Throughput Measurement of a Multilayer-Coated Schwarzschild Objective Using Synchrotron Radiation. Optical Review, 2000, 7, 576-578.	2.0	0
41	Resonant Photoemission Spectroscopy of Ga3dTwo-Hole States of GaAs. Journal of the Physical Society of Japan, 2000, 69, 1807-1811.	1.6	3
42	GaSb(001) 4×2-In Surface Structure Studied by Core-Level Photoelectron Spectroscopy and X-Ray Standing-Wave Analysis. Japanese Journal of Applied Physics, 2000, 39, 4351-4354.	1.5	1
43	Epitaxy, Modification of Electronic Structures, Overlayer-Substrate Reaction and Segregation in Ferromagnetic Co Films on Se-Treated GaAs(001) Surface. Japanese Journal of Applied Physics, 2000, 39, 4571-4574.	1.5	7
44	In-induced surface reconstruction on GaSb(001). Physical Review B, 2000, 62, 1615-1618.	3.2	10
45	Sb-induced reconstruction on Sb-terminated GaAs(001). Physical Review B, 1999, 60, 10652-10655.	3.2	9
46	Work Function Changes of GaAs Surfaces Induced by Se treatment. Japanese Journal of Applied Physics, 1999, 38, 5847-5850.	1.5	6
47	Sb desorption from Sb/GaAs(001) and GaSb(001) analyzed by core-level photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 1999, 101-103, 293-298.	1.7	7
48	Submicrometre-area high-energy-resolution photoelectron spectroscopy system. Journal of Synchrotron Radiation, 1998, 5, 1111-1113.	2.4	4
49	Real-time analysis for MBE by time-resolved core-level photoelectron spectroscopy. Journal of Synchrotron Radiation, 1998, 5, 1026-1028.	2.4	6
50	Optical design for a bending-magnet beamline based on a varied-line-spacing plane grating. Journal of Synchrotron Radiation, 1998, 5, 572-574.	2.4	5
51	Photoelectron microspectroscopy observations of a cleaved surface of semiconductor double heterostructure. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 1086-1090.	2.1	3
52	Real-Time Analysis of GaSb(001) during Sb Desorption by Core-Level Photoelectron Spectroscopy. Physical Review Letters, 1997, 78, 4233-4236.	7.8	15
53	Real-time observation of alternating growth on GaSb(001) using core-level photoelectron spectroscopy. Applied Surface Science, 1997, 112, 69-74.	6.1	3
54	Anomalous downward band bending induced by selenium passivation of MBE-grown InAs(001) surfaces. Applied Surface Science, 1997, 117-118, 735-738.	6.1	21

#	Article	IF	CITATIONS
55	Surface termination of GaAs(001) by Sb dimers. Surface Science, 1996, 357-358, 540-544.	1.9	4
56	Synchrotron radiation photoelectron spectroscopy study of bonding at heterointerfaces between InAs nanocrystals and Se-terminated GaAs. Journal of Electron Spectroscopy and Related Phenomena, 1996, 80, 221-224.	1.7	7
57	Photoelectron spectroscopy on reconstructed GaSb(001). Journal of Electron Spectroscopy and Related Phenomena, 1996, 80, 225-228.	1.7	13
58	GaSb-Growth Study by Realtime Crystal-Growth Analysis System Using Synchrotron Radiation Photoelectron Spectroscopy. Japanese Journal of Applied Physics, 1996, 35, 4457-4462.	1.5	16
59	Formation of InSb nanocrystals on Se-terminated GaAs(001). Journal of Crystal Growth, 1995, 150, 863-867.	1.5	5
60	Initial stages of Ag growth on Sb-terminated GaAs(001). Journal of Crystal Growth, 1995, 150, 1164-1168.	1.5	3
61	X-ray standing-wave study of an Sb-terminated GaAs(001)-(2×4) surface. Physical Review B, 1995, 52, 2678-2681.	3.2	53
62	Photoelectron Spectroscopy of \$f EuBa_{2}Cu_{3}O_{{7}-{inmbi y}}\$ Thin Film Surfaces Treated by an Electron Cyclotron Resonance Oxygen Ion Beam. Japanese Journal of Applied Physics, 1995, 34, L433-L436.	1.5	0
63	Water-Immersion-Induced Surface Reactions ofEuBa2Cu3OyThin Films. Japanese Journal of Applied Physics, 1995, 34, 1396-1400.	1.5	1
64	Selective, Maskless Growth of InSb on Selenium-Treated GaAs by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1994, 33, 698-701.	1.5	19
65	A VUV beamline (ABL-3B) for real-time photoelectron spectroscopy at the NTT synchrotron radiation facility. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 342, 596-599.	1.6	7
66	Comparative study between MEE- and MBE-grown InSb-nanocrystals on Se-terminated GaAs(001). Applied Surface Science, 1994, 82-83, 136-140.	6.1	4
67	Surface reactions of Ga and As on Sb-terminated GaAs(001). Applied Surface Science, 1994, 82-83, 276-283.	6.1	1
68	Control of surface bonding by realtime monitoring using synchrotron radiation photoelectron spectroscopy. , 1994, , 127-132.		0
69	MBE growth of InAs and InSb on EuBa2Cu3O7-y superconducting films. Journal of Crystal Growth, 1993, 127, 672-677.	1.5	1
70	Sb-induced surface reconstruction on GaAs(001). Physical Review B, 1993, 48, 14733-14736.	3.2	46
71	Surface structure of Se-treated GaAs(001) from angle-resolved analysis of core-level photoelectron spectra. Physical Review B, 1993, 48, 4956-4959.	3.2	33
72	Initial stages of InAs deposition on SrF2â€coated EuBa2Cu3O7â^'ythinâ€film superconductors. Journal of Applied Physics, 1993, 74, 5212-5216.	2.5	0

#	Article	IF	CITATIONS
73	Synchrotron Radiation Photoelectron Spectroscopy of High-TcSuperconductor Bi-Sr-Ca-Cu-O Single Crystals. Japanese Journal of Applied Physics, 1989, 28, L361-L363.	1.5	5
74	Angle-resolved ultraviolet photoemission study of first stage alkali-metal graphite intercalation compounds. European Physical Journal B, 1988, 70, 349-355.	1.5	30
75	Unoccupied-electronic-band structure of graphite studied by angle-resolved secondary-electron emission and inverse photoemission. Physical Review B, 1988, 37, 4482-4488.	3.2	83
76	Photoemission study of single-crystalline(La1â^'xSrx)2CuO4. Physical Review B, 1988, 37, 9788-9791.	3.2	81
77	Ultraviolet Photoemission Study of High-TcSuperconductor (La1-xSrx)2CuO4-δ. Japanese Journal of Applied Physics, 1987, 26, L349-L351.	1.5	40
78	Synchrotron-radiation photoemission study of the high-TcsuperconductorYBa2Cu3O7â^δ. Physical Review B, 1987, 36, 5686-5689.	3.2	104
79	Surface and bulk core-level shifts of the Si(111)â^š3 â^š3-Ag surface: Evidence for a chargedâ^š3 â^š3layer. Physical Review Letters, 1987, 58, 1555-1558.	7.8	99
80	Surface core-level shifts of the -Ga surface. Surface Science, 1987, 186, L568-L574.	1.9	10
81	Electronic Band Structure of C8Cs Studied by Highly-Angle-Resolved Ultraviolet Photoelectron Spectroscopy. Journal of the Physical Society of Japan, 1987, 56, 2581-2589.	1.6	10
82	Photoelectron spectroscopy of LnBa2Cu3O7â~δ(Ln=YandSm). Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1987, 148, 476-479.	0.9	1
83	Photoelectron Spectroscopy of High-TcSuperconductor (La1-xSrx)2CuO4-δ. Japanese Journal of Applied	1.5	5