Riccardo Troncone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3039579/publications.pdf

Version: 2024-02-01

279798 214800 2,389 67 23 47 citations h-index g-index papers 69 69 69 2431 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Inflammation Is Present, Persistent and More Sensitive to Proinflammatory Triggers in Celiac Disease Enterocytes. International Journal of Molecular Sciences, 2022, 23, 1973.	4.1	18
2	Early Feeding Practices and Celiac Disease Prevention: Protocol for an Updated and Revised Systematic Review and Meta-Analysis. Nutrients, 2022, 14, 1040.	4.1	3
3	Single-Cell RNA Sequencing of Peripheral Blood Mononuclear Cells From Pediatric Coeliac Disease Patients Suggests Potential Pre-Seroconversion Markers. Frontiers in Immunology, 2022, 13, 843086.	4.8	7
4	In a large Juvenile Idiopathic Arthritis (JIA) cohort, concomitant celiac disease is associated with family history of autoimmunity and a more severe JIA course: a retrospective study. Pediatric Rheumatology, 2022, 20, 31.	2.1	8
5	Prediction Models for Celiac Disease Development in Children From High-Risk Families: Data From the PreventCD Cohort. Gastroenterology, 2022, 163, 426-436.	1.3	14
6	Cell-type-specific gene expression profile by laser capture microdissection on mirror sections. Journal of Immunological Methods, 2022, 505, 113276 .	1.4	0
7	The gliadin p31–43 peptide: Inducer of multiple proinflammatory effects. International Review of Cell and Molecular Biology, 2021, 358, 165-205.	3.2	19
8	Seronegative Villous Atrophy in Children. Journal of Pediatric Gastroenterology and Nutrition, 2021, 72, 282-287.	1.8	7
9	Precision medicine and machine learning towards the prediction of the outcome of potential celiac disease. Scientific Reports, 2021, 11, 5683.	3.3	20
10	Pediatric Celiac Disease Patients Show Alterations of Dendritic Cell Shape and Actin Rearrangement. International Journal of Molecular Sciences, 2021, 22, 2708.	4.1	6
11	Diagnosing Coeliac Disease During Mass-Screening of General Paediatric Population: Is Biopsy Avoidable?. Journal of Pediatric Gastroenterology and Nutrition, 2021, 73, e63-e67.	1.8	6
12	Where have all the other coeliacs gone in 2020? Road for a 2021 catch-up with missed diagnoses. Digestive and Liver Disease, 2021, 53, 504-505.	0.9	8
13	Can Celiac Disease Be Prevented?. Frontiers in Immunology, 2021, 12, 672148.	4.8	10
14	Triticum monococcum amylase trypsin inhibitors possess a reduced potential to elicit innate immune response in celiac patients compared to Triticum aestivum. Food Research International, 2021, 145, 110386.	6.2	5
15	Intestinal Cellular Biomarkers of Mucosal Lesion Progression in Pediatric Celiac Disease. Pharmaceutics, 2021, 13, 1971.	4.5	4
16	Circulating miRNAs as Potential Biomarkers for Celiac Disease Development. Frontiers in Immunology, 2021, 12, 734763.	4.8	11
17	Identification of a \hat{I}^3 c Receptor Antagonist That Prevents Reprogramming of Human Tissue-resident Cytotoxic T Cells by IL15 and IL21. Gastroenterology, 2020, 158, 625-637.e13.	1.3	23
18	Increased frequency of regulatory T cells in pediatric inflammatory bowel disease at diagnosis: a compensative role?. Pediatric Research, 2020, 87, 853-861.	2.3	11

#	Article	IF	CITATIONS
19	European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. Journal of Pediatric Gastroenterology and Nutrition, 2020, 70, 141-156.	1.8	601
20	Adherence to Gluten-Free Diet in Coeliac Paediatric Patients Assessed through a Questionnaire Positively Influences Growth and Quality of Life. Nutrients, 2020, 12, 3802.	4.1	9
21	In Celiac Disease Patients the In Vivo Challenge with the Diploid <i>Triticum monococcum </i> Elicits a Reduced Immune Response Compared to Hexaploid Wheat. Molecular Nutrition and Food Research, 2020, 64, e1901032.	3.3	22
22	Growth rate of coeliac children is compromised before the onset of the disease. Archives of Disease in Childhood, 2020, 105, 964-968.	1.9	7
23	Intestinal Anti-tissue Transglutaminase2 Autoantibodies: Pathogenic and Clinical Implications for Celiac Disease. Frontiers in Nutrition, 2020, 7, 73.	3.7	14
24	Recent Progress and Recommendations on Celiac Disease From the Working Group on Prolamin Analysis and Toxicity. Frontiers in Nutrition, 2020, 7, 29.	3.7	34
25	Statement of the Prolamin Working Group on the Determination of Gluten in Fermented Foods Containing Partially Hydrolyzed Gluten. Frontiers in Nutrition, 2020, 7, 626712.	3.7	5
26	Progression of Celiac Disease in Children With Antibodies Against Tissue Transglutaminase and Normal Duodenal Architecture. Gastroenterology, 2019, 157, 413-420.e3.	1.3	58
27	E40, a novel microbial protease efficiently detoxifying gluten proteins, for the dietary management of gluten intolerance. Scientific Reports, 2019, 9, 13147.	3.3	40
28	Efficacy of the gluten free diet in the management of functional gastrointestinal disorders: a systematic review on behalf of the Italian Society of Paediatrics. Italian Journal of Pediatrics, 2019, 45, 9.	2.6	13
29	Constitutive alterations in vesicular trafficking increase the sensitivity of cells from celiac disease patients to gliadin. Communications Biology, 2019, 2, 190.	4.4	20
30	Extra-Intestinal Manifestations of Coeliac Disease in Children: Clinical Features and Mechanisms. Frontiers in Pediatrics, 2019, 7, 56.	1.9	52
31	European Society for Paediatric Gastroenterology, Hepatology and Nutrition Distinguished Service Award 2019 to Professor Stefano Guandalini. Journal of Pediatric Gastroenterology and Nutrition, 2019, 69, 631-632.	1.8	0
32	Chapter 3. The European Society for Paediatric Gastroenterology, Hepatology and Nutrition in Recent Years. Journal of Pediatric Gastroenterology and Nutrition, 2018, 66, S29-S43.	1.8	0
33	Laser Capture Microdissection as a Tool to Study the Mucosal Immune Response in Celiac Disease. Methods in Molecular Biology, 2018, 1723, 139-154.	0.9	6
34	Anti-gliadin antibodies in breast milk from celiac mothers on a gluten-free diet. European Journal of Nutrition, 2018, 57, 1947-1955.	3.9	7
35	P31–43, an undigested gliadin peptide, mimics and enhances the innate immune response to viruses and interferes with endocytic trafficking: a role in celiac disease. Scientific Reports, 2018, 8, 10821.	3.3	40
36	Chapter 8. 50 Years of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN). Journal of Pediatric Gastroenterology and Nutrition, 2018, 66, S154-S171.	1.8	0

3

#	Article	IF	CITATIONS
37	The role of gluten consumption at an early age in celiac disease development: a further analysis of the prospective PreventCD cohort study. American Journal of Clinical Nutrition, 2017, 105, 890-896.	4.7	43
38	Gliadin-Specific CD8+ T Cell Responses Restricted by HLA Class I A*0101 and B*0801 Molecules in Celiac Disease Patients. Journal of Immunology, 2017, 198, 1838-1845.	0.8	12
39	Accuracy in Diagnosis of Celiac Disease Without Biopsies inÂClinical Practice. Gastroenterology, 2017, 153, 924-935.	1.3	204
40	The clinical spectrum of coeliac disease: beyond autoimmunity. Acta Paediatrica, International Journal of Paediatrics, 2017, 106, 973-973.	1.5	0
41	Gliadinâ€reactive T cells in Italian children from preventCD cohort at high risk of celiac disease. Pediatric Allergy and Immunology, 2017, 28, 362-369.	2.6	28
42	Mass Screening for Celiac Disease Among School-aged Children: Toward Exploring Celiac Iceberg in Saudi Arabia. Journal of Pediatric Gastroenterology and Nutrition, 2017, 65, 646-651.	1.8	54
43	Cytokine production profile in intestinal mucosa of paediatric inflammatory bowel disease. PLoS ONE, 2017, 12, e0182313.	2.5	35
44	Transition from childhood to adulthood in coeliac disease: the Prague consensus report. Gut, 2016, 65, 1242-1251.	12.1	85
45	In the Intestinal Mucosa of Children With Potential Celiac Disease IL-21 and IL-17A are Less Expressed than in the Active Disease. American Journal of Gastroenterology, 2016, 111, 134-144.	0.4	17
46	Celiac disease: role of intestinal compartments in the mucosal immune response. Molecular and Cellular Biochemistry, 2016, 411, 341-349.	3.1	21
47	Extensive in vitro gastrointestinal digestion markedly reduces the immuneâ€toxicity of ⟨i⟩Triticum monococcum⟨/i⟩ wheat: Implication for celiac disease. Molecular Nutrition and Food Research, 2015, 59, 1844-1854.	3.3	65
48	Gliadin-Specific T-Cells Mobilized in the Peripheral Blood of Coeliac Patients by Short Oral Gluten Challenge: Clinical Applications. Nutrients, 2015, 7, 10020-10031.	4.1	18
49	Distinct and Synergistic Contributions of Epithelial Stress and Adaptive Immunity to Functions of Intraepithelial Killer Cells and Active Celiac Disease. Gastroenterology, 2015, 149, 681-691.e10.	1.3	87
50	Risk factors for celiac disease. Italian Journal of Pediatrics, 2015, 41, 57.	2.6	23
51	Adaptive diagnosis of coeliac disease. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2015, 29, 381-398.	2.4	20
52	Gliadin Peptides as Triggers of the Proliferative and Stress/Innate Immune Response of the Celiac Small Intestinal Mucosa. International Journal of Molecular Sciences, 2014, 15, 20518-20537.	4.1	81
53	Celiac Disease and Autoimmunity. Journal of Pediatric Gastroenterology and Nutrition, 2014, 59, S9-S11.	1.8	35
54	Presentation of the 2013 ESPGHAN Distinguished Service Award to Professor David Branski. Journal of Pediatric Gastroenterology and Nutrition, 2014, 59, 1-2.	1.8	5

#	Article	IF	CITATIONS
55	Gliadin intake alters the small intestinal mucosa in indomethacin-treated HLA-DQ8 transgenic mice. American Journal of Physiology - Renal Physiology, 2014, 307, G302-G312.	3.4	9
56	PD20 ―Hospital admissions for foodâ€induced anaphylaxis in Italian children: a new report for the years 2006â€2011. Clinical and Translational Allergy, 2014, 4, P20.	3.2	1
57	Autophagy genes variants and paediatric Crohn's disease phenotype: A single-centre experience. Digestive and Liver Disease, 2014, 46, 512-517.	0.9	22
58	Potential Celiac Children: 9-Year Follow-Up on a Gluten-Containing Diet. American Journal of Gastroenterology, 2014, 109, 913-921.	0.4	89
59	Diagnosing and Treating Food Allergy. Current Pediatrics Reports, 2013, 1, 189-197.	4.0	5
60	Short Stature and Catchâ€up Growth in Celiac Disease. Journal of Pediatric Gastroenterology and Nutrition, 2010, 51, S137-8.	1.8	40
61	Colon in Food Allergy. Journal of Pediatric Gastroenterology and Nutrition, 2009, 48, S89-91.	1.8	28
62	The influence of gluten free diet on quantitative ultrasound of proximal phalanxes in children and adolescents with type 1 diabetes mellitus and celiac disease. Bone, 2008, 43, 322-326.	2.9	23
63	Issues related to gluten-free diet in coeliac disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2008, 11, 329-333.	2.5	41
64	HLA related genetic risk for coeliac disease. Gut, 2007, 56, 1054-1059.	12.1	94
65	Coeliac Disease and Extraintestinal Autoimmunity. Journal of Pediatric Gastroenterology and Nutrition, 2004, 39, S740-S741.	1.8	11
66	Gluten Sensitivity in a Subset of Children With Insulin Dependent Diabetes Mellitus. American Journal of Gastroenterology, 2003, 98, 590-595.	0.4	48
67	HLA-DR53 molecules are associated with susceptibility to celiac disease and selectively bind	2.4	33