
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/303913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetics of Addiction. , 2022, , 383-389.		ο
2	Footshock-Induced Abstinence from Compulsive Methamphetamine Self-administration in Rat Model Is Accompanied by Increased Hippocampal Expression of Cannabinoid Receptors (CB1 and CB2). Molecular Neurobiology, 2022, 59, 1238-1248.	4.0	4
3	Reward Deficiency Syndrome (RDS) Surprisingly Is Evolutionary and Found Everywhere: Is It "Blowin' in the Wind�. Journal of Personalized Medicine, 2022, 12, 321.	2.5	15
4	Sex-Specific Alterations in Dopamine Metabolism in the Brain after Methamphetamine Self-Administration. International Journal of Molecular Sciences, 2022, 23, 4353.	4.1	6
5	Sex differences in methamphetamine use disorder perused from pre-clinical and clinical studies: Potential therapeutic impacts. Neuroscience and Biobehavioral Reviews, 2022, 137, 104674.	6.1	27
6	Proposing a "Brain Health Checkup (BHC)―as a Global Potential "Standard of Care―to Overcome Reward Dysregulation in Primary Care Medicine: Coupling Genetic Risk Testing and Induction of "Dopamine Homeostasis― International Journal of Environmental Research and Public Health, 2022, 19, 5480.	2.6	4
7	Researching Mitigation of Alcohol Binge Drinking in Polydrug Abuse: KCNK13 and RASGRF2 Gene(s) Risk Polymorphisms Coupled with Genetic Addiction Risk Severity (GARS) Guiding Precision Pro-Dopamine Regulation. Journal of Personalized Medicine, 2022, 12, 1009.	2.5	6
8	Sex-Dependent Alterations in the mRNA Expression of Enzymes Involved in Dopamine Synthesis and Breakdown After Methamphetamine Self-Administration. Neurotoxicity Research, 2022, 40, 1464-1478.	2.7	2
9	Sex- and Brain Region-specific Changes in Gene Expression in Male and Female Rats as Consequences of Methamphetamine Self-administration and Abstinence. Neuroscience, 2021, 452, 265-279.	2.3	19
10	Inaction speaks louder than words: tips forÂincreasing black ACNP membership. Neuropsychopharmacology, 2021, 46, 877-877.	5.4	3
11	Methamphetamine and MDMA Neurotoxicity: Biochemical and Molecular Mechanisms. , 2021, , 1-24.		0
12	Oxycodone self-administration activates the mitogen-activated protein kinase/ mitogen- and stress-activated protein kinase (MAPK-MSK) signaling pathway in the rat dorsal striatum. Scientific Reports, 2021, 11, 2567.	3.3	8
13	Increased novelty-induced locomotion, sensitivity to amphetamine, and extracellular dopamine in striatum of Zdhhc15-deficient mice. Translational Psychiatry, 2021, 11, 65.	4.8	12
14	Psychostimulant use disorder emphasizing methamphetamine and the opioid -dopamine connection: Digging out of a hypodopaminergic ditch. Journal of the Neurological Sciences, 2021, 420, 117252.	0.6	22
15	Cannabis-Induced Hypodopaminergic Anhedonia and Cognitive Decline in Humans: Embracing Putative Induction of Dopamine Homeostasis. Frontiers in Psychiatry, 2021, 12, 623403.	2.6	16
16	High Genetic Addiction Risk Score (GARS) in Chronically Prescribed Severe Chronic Opioid Probands Attending Multi-pain Clinics: an Open Clinical Pilot Trial. Molecular Neurobiology, 2021, 58, 3335-3346.	4.0	21
17	Epigenetic Landscape of Methamphetamine Use Disorder. Current Neuropharmacology, 2021, 19, 2060-2066.	2.9	7
18	Footshockâ€induced abstinence from compulsive methamphetamine selfâ€administration is associated with increased expression of cannabinoid receptors (CB1 and CB2) in the rat hippocampus. FASEB Journal, 2021, 35, .	0.5	0

#	Article	IF	CITATIONS
19	Epigenetics of addiction. Neurochemistry International, 2021, 147, 105069.	3.8	18
20	COVID-19 Pandemic and Fentanyl Use Disorder in African Americans. Frontiers in Neuroscience, 2021, 15, 707386.	2.8	7
21	Elevated body fat increases amphetamine accumulation in brain: evidence from genetic and diet-induced forms of adiposity. Translational Psychiatry, 2021, 11, 427.	4.8	1
22	Histone Deacetylases and Immediate Early Genes: Key Players in Psychostimulant-Induced Neuronal Plasticity. Neurotoxicity Research, 2021, 39, 2134-2140.	2.7	9
23	Sex in the Nucleus Accumbens: ΔFosB, Addiction, and Affective States. Biological Psychiatry, 2021, 90, 508-510.	1.3	3
24	Neurotoxicity of methamphetamine: Main effects and mechanisms. Experimental Neurology, 2021, 344, 113795.	4.1	88
25	Potassium Channels and Their Potential Roles in Substance Use Disorders. International Journal of Molecular Sciences, 2021, 22, 1249.	4.1	14
26	The molecular neurobiology and neuropathology of opioid use disorder. Current Research in Neurobiology, 2021, 2, 100023.	2.3	4
27	Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder. Genes, 2021, 12, 1614.	2.4	12
28	Reward Deficiency Syndrome (RDS): A Cytoarchitectural Common Neurobiological Trait of All Addictions. International Journal of Environmental Research and Public Health, 2021, 18, 11529.	2.6	12
29	Psychoactive Drugs Like Cannabis -Induce Hypodopaminergic Anhedonia and Neuropsychological Dysfunction in Humans: Putative Induction of Dopamine Homeostasis via Coupling of Genetic Addiction Risk Severity (GARS) testing and Precision Pro-dopamine Regulation (KB220). , 2021, 13, 86-92.		0
30	Epigenetic and Genetic Factors Associated With Opioid Use Disorder: Are These Relevant to African American Populations. Frontiers in Pharmacology, 2021, 12, 798362.	3.5	4
31	HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex. Addiction Biology, 2020, 25, e12737.	2.6	15
32	A Single Prior Injection of Methamphetamine Enhances Methamphetamine Self-Administration (SA) and Blocks SA-Induced Changes in DNA Methylation and mRNA Expression of Potassium Channels in the Rat Nucleus Accumbens. Molecular Neurobiology, 2020, 57, 1459-1472.	4.0	24
33	Compulsive methamphetamine taking induces autophagic and apoptotic markers in the rat dorsal striatum. Archives of Toxicology, 2020, 94, 3515-3526.	4.2	14
34	Putative COVID- 19 Induction of Reward Deficiency Syndrome (RDS) and Associated Behavioral Addictions with Potential Concomitant Dopamine Depletion: Is COVID-19 Social Distancing a Double Edged Sword?. Substance Use and Misuse, 2020, 55, 2438-2442.	1.4	16
35	Methamphetamine pre-exposure induces steeper escalation of methamphetamine self-administration with consequent alterations in hippocampal glutamate AMPA receptor mRNAs. European Journal of Pharmacology, 2020, 889, 173732.	3.5	2
36	Acute Regulation of the Arousal-Enhancing Drugs Caffeine and Modafinil on Class IIa HDACs In Vivo and In Vitro: Focus on HDAC7. Neurotoxicity Research, 2020, 38, 498-507.	2.7	2

#	Article	IF	CITATIONS
37	Neurochemical and behavioral comparisons of contingent and non-contingent methamphetamine exposure following binge or yoked long-access self-administration paradigms. Psychopharmacology, 2020, 237, 1989-2005.	3.1	19
38	Prolonged Withdrawal From Escalated Oxycodone Is Associated With Increased Expression of Glutamate Receptors in the Rat Hippocampus. Frontiers in Neuroscience, 2020, 14, 617973.	2.8	3
39	The effects of single-dose injections of modafinil and methamphetamine on epigenetic and functional markers in the mouse medial prefrontal cortex: potential role of dopamine receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 88, 222-234.	4.8	26
40	Escalated Oxycodone Self-Administration Causes Differential Striatal mRNA Expression of FGFs and IEGs Following Abstinence-Associated Incubation of Oxycodone Craving. Neuroscience, 2019, 415, 173-183.	2.3	32
41	Sex Differences in Escalated Methamphetamine Self-Administration and Altered Gene Expression Associated With Incubation of Methamphetamine Seeking. International Journal of Neuropsychopharmacology, 2019, 22, 710-723.	2.1	38
42	Significance of protein kinase C in the neuropsychotoxicity induced by methamphetamine-like psychostimulants. Neurochemistry International, 2019, 124, 162-170.	3.8	18
43	Genetic and Environmental Risk Factors for Cannabis Use: Preliminary Results for the Role of Parental Care Perception. Substance Use and Misuse, 2019, 54, 670-680.	1.4	18
44	Animal models of addiction: Compulsive drug taking and cognition. Neuroscience and Biobehavioral Reviews, 2019, 106, 5-6.	6.1	11
45	Compulsive methamphetamine taking and abstinence in the presence of adverse consequences: Epigenetic and transcriptional consequences in the rat brain. Pharmacology Biochemistry and Behavior, 2019, 179, 98-108.	2.9	29
46	Molecular Adaptations in the Rat Dorsal Striatum and Hippocampus Following Abstinence-Induced Incubation of Drug Seeking After Escalated Oxycodone Self-Administration. Molecular Neurobiology, 2019, 56, 3603-3615.	4.0	39
47	Expression of immediate early genes in brain reward circuitries: Differential regulation by psychostimulant and opioid drugs. Neurochemistry International, 2019, 124, 10-18.	3.8	15
48	Regulation of microRNA-29c in the nucleus accumbens modulates methamphetamine -induced locomotor sensitization in mice. Neuropharmacology, 2019, 148, 160-168.	4.1	28
49	Protective potentials of far-infrared ray against neuropsychotoxic conditions. Neurochemistry International, 2019, 122, 144-148.	3.8	8
50	Escalated Oxycodone Self-Administration and Punishment: Differential Expression of Opioid Receptors and Immediate Early Genes in the Rat Dorsal Striatum and Prefrontal Cortex. Frontiers in Neuroscience, 2019, 13, 1392.	2.8	22
51	Selective Activation of Striatal NGF-TrkA/p75NTR/MAPK Intracellular Signaling in Rats That Show Suppression of Methamphetamine Intake 30 Days following Drug Abstinence. International Journal of Neuropsychopharmacology, 2018, 21, 281-290.	2.1	15
52	Gene variants and educational attainment in cannabis use: mediating role of DNA methylation. Translational Psychiatry, 2018, 8, 23.	4.8	32
53	Methamphetamine Induces TET1- and TET3-Dependent DNA Hydroxymethylation of Crh and Avp Genes in the Rat Nucleus Accumbens. Molecular Neurobiology, 2018, 55, 5154-5166.	4.0	38
54	Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 82, 1-11.	4.8	39

#	Article	IF	CITATIONS
55	Compulsive methamphetamine taking under punishment is associated with greater cue-induced drug seeking in rats. Behavioural Brain Research, 2017, 326, 265-271.	2.2	31
56	Compulsive methamphetamine taking in the presence of punishment is associated with increased oxytocin expression in the nucleus accumbens of rats. Scientific Reports, 2017, 7, 8331.	3.3	26
57	Dysregulation of Acetylation Enzymes Inanimal Models of Psychostimulant use Disorders: Evolving Stories. Current Neuropharmacology, 2016, 14, 10-16.	2.9	6
58	Serotonin-Related Gene Polymorphisms and Asymptomatic Neurocognitive Impairment in HIV-Infected Alcohol Abusers. Genetics Research International, 2016, 2016, 1-7.	2.0	9
59	Chronic Methamphetamine Effects on Brain Structure and Function in Rats. PLoS ONE, 2016, 11, e0155457.	2.5	66
60	Drug-induced neurotoxicity in addiction medicine. Progress in Brain Research, 2016, 223, 19-41.	1.4	39
61	Increased expression of proenkephalin and prodynorphin mRNAs in the nucleus accumbens of compulsive methamphetamine taking rats. Scientific Reports, 2016, 6, 37002.	3.3	22
62	Epigenetics of Stress, Addiction, and Resilience: Therapeutic Implications. Molecular Neurobiology, 2016, 53, 545-560.	4.0	113
63	An Acute Methamphetamine Injection Downregulates the Expression of Several Histone Deacetylases (HDACs) in the Mouse Nucleus Accumbens: Potential Regulatory Role of HDAC2 Expression. Neurotoxicity Research, 2016, 30, 32-40.	2.7	19
64	Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways. Psychopharmacology, 2016, 233, 1945-1962.	3.1	79
65	Combined Effects of Simultaneous Exposure to Caffeine and Cocaine in the Mouse Striatum. Neurotoxicity Research, 2016, 29, 525-538.	2.7	17
66	Anti-NMDA receptor autoantibodies and associated neurobehavioral pathology in mice are dependent on age of first exposure to Toxoplasma gondii. Neurobiology of Disease, 2016, 91, 307-314.	4.4	38
67	Methamphetamine blunts Ca ²⁺ currents and excitatory synaptic transmission through D1/5 receptor-mediated mechanisms in the mouse medial prefrontal cortex. Addiction Biology, 2016, 21, 589-602.	2.6	28
68	Differential Expression of mRNAs Coding for Histone Deacetylases (HDACs) in the Nucleus Accumbens of Compulsive Methamphetamine Takers and Abstinent Rats. Journal of Drug and Alcohol Research, 2016, 5, 1-9.	0.9	3
69	CAMKII-conditional deletion of histone deacetylase 2 potentiates acute methamphetamine-induced expression of immediate early genes in the mouse nucleus accumbens. Scientific Reports, 2015, 5, 13396.	3.3	16
70	Psychostimulant-Induced Testicular Toxicity in Mice: Evidence of Cocaine and Caffeine Effects on the Local Dopaminergic System. PLoS ONE, 2015, 10, e0142713.	2.5	18
71	Epigenetic landscape of amphetamine and methamphetamine addiction in rodents. Epigenetics, 2015, 10, 574-580.	2.7	101
72	Differential Effects of Environment-Induced Changes in Body Temperature on Modafinil's Actions Against Methamphetamine-Induced Striatal Toxicity in Mice. Neurotoxicity Research, 2015, 27, 71-83.	2.7	12

#	Article	IF	CITATIONS
73	DRD2 and DRD4 genes related to cognitive deficits in HIV-infected adults who abuse alcohol. Behavioral and Brain Functions, 2015, 11, 25.	3.3	15
74	l-Dopa induced dyskinesias in Parkinsonian mice: Disease severity or l-Dopa history. Brain Research, 2015, 1618, 261-269.	2.2	19
75	Transcriptional and Epigenetic Substrates of Methamphetamine Addiction and Withdrawal: Evidence from a Long-Access Self-Administration Model in the Rat. Molecular Neurobiology, 2015, 51, 696-717.	4.0	64
76	Neuropsychological Consequences of Chronic Drug Use: Relevance to Treatment Approaches. Frontiers in Psychiatry, 2015, 6, 189.	2.6	69
77	Glial-neuronal ensembles: partners in drug addiction-associated synaptic plasticity. Frontiers in Pharmacology, 2014, 5, 204.	3.5	30
78	Stress, sex, and addiction. Behavioural Pharmacology, 2014, 25, 445-457.	1.7	52
79	Neuropathology of substance use disorders. Acta Neuropathologica, 2014, 127, 91-107.	7.7	156
80	Methamphetamine Downregulates Striatal Glutamate Receptors via Diverse Epigenetic Mechanisms. Biological Psychiatry, 2014, 76, 47-56.	1.3	109
81	Differential effects of binge methamphetamine injections on the mRNA expression of histone deacetylases (HDACs) in the rat striatum. NeuroToxicology, 2014, 45, 178-184.	3.0	27
82	Methamphetamine and MDMA Neurotoxicity: Biochemical and Molecular Mechanisms. , 2014, , 347-363.		2
83	Modafinil improves methamphetamine-induced object recognition deficits and restores prefrontal cortex ERK signaling in mice. Neuropharmacology, 2014, 87, 188-197.	4.1	53
84	Enhanced Upregulation of CRH mRNA Expression in the Nucleus Accumbens of Male Rats after a Second Injection of Methamphetamine Given Thirty Days Later. PLoS ONE, 2014, 9, e84665.	2.5	35
85	Genome-wide profiling identifies a subset of methamphetamine (METH)-induced genes associated with METH-induced increased H4K5Ac binding in the rat striatum. BMC Genomics, 2013, 14, 545.	2.8	43
86	Epigenetics of Methamphetamine-Induced Changes in Glutamate Function. Neuropsychopharmacology, 2013, 38, 248-249.	5.4	27
87	CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiology of Disease, 2013, 58, 132-143.	4.4	115
88	The Primacy of Cognition in the Manifestations of Substance Use Disorders. Frontiers in Neurology, 2013, 4, 189.	2.4	24
89	Mutant DISC1 affects methamphetamine-induced sensitization and conditioned place preference: a comorbidity model. Neuropharmacology, 2012, 62, 1242-1251.	4.1	43
90	GluA3-deficiency in mice is associated with increased social and aggressive behavior and elevated dopamine in striatum. Behavioural Brain Research, 2012, 229, 265-272.	2.2	61

#	Article	IF	CITATIONS
91	Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ. Behavioural Brain Research, 2012, 232, 98-113.	2.2	61
92	Methamphetamine Causes Differential Alterations in Gene Expression and Patterns of Histone Acetylation/Hypoacetylation in the Rat Nucleus Accumbens. PLoS ONE, 2012, 7, e34236.	2.5	111
93	Altered spatial learning, cortical plasticity and hippocampal anatomy in a neurodevelopmental model of schizophreniaâ€related endophenotypes. European Journal of Neuroscience, 2012, 36, 2773-2781.	2.6	9
94	Modafinil Abrogates Methamphetamine-Induced Neuroinflammation and Apoptotic Effects in the Mouse Striatum. PLoS ONE, 2012, 7, e46599.	2.5	73
95	Involvement of Dopamine Receptors in Binge Methamphetamine-Induced Activation of Endoplasmic Reticulum and Mitochondrial Stress Pathways. PLoS ONE, 2011, 6, e28946.	2.5	78
96	Chronic methamphetamine exposure suppresses the striatal expression of members of multiple families of immediate early genes (IEGs) in the rat: normalization by an acute methamphetamine injection. Psychopharmacology, 2011, 215, 353-365.	3.1	47
97	Methamphetamine Preconditioning Causes Differential Changes in Striatal Transcriptional Responses to Large Doses of the Drug. Dose-Response, 2011, 9, dose-response.1.	1.6	25
98	Chronic Methamphetamine Administration Causes Differential Regulation of Transcription Factors in the Rat Midbrain. PLoS ONE, 2011, 6, e19179.	2.5	35
99	Mice Lacking Multidrug Resistance Protein 1a Show Altered Dopaminergic Responses to Methylenedioxymethamphetamine (MDMA) in Striatum. Neurotoxicity Research, 2010, 18, 200-209.	2.7	6
100	Differential effects of methamphetamine and SCH23390 on the expression of members of IEG families of transcription factors in the rat striatum. Brain Research, 2010, 1318, 1-10.	2.2	36
101	Dietary restriction mitigates cocaineâ€induced alterations of olfactory bulb cellular plasticity and gene expression, and behavior. Journal of Neurochemistry, 2010, 114, 323-334.	3.9	5
102	Methamphetamine Self-Administration Is Associated with Persistent Biochemical Alterations in Striatal and Cortical Dopaminergic Terminals in the Rat. PLoS ONE, 2010, 5, e8790.	2.5	119
103	Methamphetamine-Induced Dopamine-Independent Alterations in Striatal Gene Expression in the 6-Hydroxydopamine Hemiparkinsonian Rats. PLoS ONE, 2010, 5, e15643.	2.5	25
104	Dopamine D1 Receptors, Regulation of Gene Expression in the Brain, and Neurodegeneration. CNS and Neurological Disorders - Drug Targets, 2010, 9, 526-538.	1.4	90
105	Methamphetamine Preconditioning Alters Midbrain Transcriptional Responses to Methamphetamine-Induced Injury in the Rat Striatum. PLoS ONE, 2009, 4, e7812.	2.5	49
106	Methamphetamine toxicity and messengers of death. Brain Research Reviews, 2009, 60, 379-407.	9.0	519
107	Cellular and Molecular Neurobiology of Brain Preconditioning. Molecular Neurobiology, 2009, 39, 50-61.	4.0	51
108	Ocular Manifestations of Crystal Methamphetamine Use. Neurotoxicity Research, 2009, 15, 187-191.	2.7	28

#	Article	IF	CITATIONS
109	Methamphetamine Preconditioning: Differential Protective Effects on Monoaminergic Systems in the Rat Brain. Neurotoxicity Research, 2009, 15, 252-259.	2.7	37
110	Methamphetamine treatment causes delayed decrease in novelty-induced locomotor activity in mice. Neuroscience Research, 2009, 65, 160-165.	1.9	17
111	Methamphetamine- and Trauma-Induced Brain Injuries: Comparative Cellular and Molecular Neurobiological Substrates. Biological Psychiatry, 2009, 66, 118-127.	1.3	105
112	Molecular Bases of Methamphetamine-Induced Neurodegeneration. International Review of Neurobiology, 2009, 88, 101-119.	2.0	195
113	Amphetamine recapitulates developmental programs in the zebrafish. Genome Biology, 2009, 10, 231.	9.6	11
114	Comorbid Mood, Psychosis, and Marijuana Abuse Disorders: A Theoretical Review. Journal of Addictive Diseases, 2009, 28, 309-319.	1.3	29
115	Methamphetamine Induces Dopamine D1 Receptor-Dependent Endoplasmic Reticulum Stress-Related Molecular Events in the Rat Striatum. PLoS ONE, 2009, 4, e6092.	2.5	76
116	The combination of methamphetamine and of the HIV protein, Tat, induces death of the human neuroblastoma cell line, SH-SY5Y. Synapse, 2008, 62, 551-552.	1.2	16
117	Differential neurochemical consequences of an escalating dose-binge regimen followed by single-day multiple-dose methamphetamine challenges. Journal of Neurochemistry, 2008, 105, 1873-1885.	3.9	48
118	Environmental enrichment during adolescence regulates gene expression in the striatum of mice. Brain Research, 2008, 1222, 31-41.	2.2	46
119	Amphetamine causes dopamine depletion and cell death in the mouse olfactory bulb. European Journal of Pharmacology, 2008, 589, 94-97.	3.5	17
120	Sertraline slows disease progression and increases neurogenesis in N171-82Q mouse model of Huntington's disease. Neurobiology of Disease, 2008, 30, 312-322.	4.4	129
121	Methamphetamine Administration Causes Death of Dopaminergic Neurons in the Mouse Olfactory Bulb. Biological Psychiatry, 2007, 61, 1235-1243.	1.3	62
122	Exogenous Acquired Metabolic Disorders of the Nervous System. , 2007, , 865-896.		4
123	Neonatal dopamine depletion induces changes in morphogenesis and gene expression in the developing cortex. Neurotoxicity Research, 2007, 11, 107-130.	2.7	26
124	Neurotoxicity of substituted amphetamines: Molecular and cellular mechanisms. Neurotoxicity Research, 2007, 11, 183-202.	2.7	252
125	Interactions of HIV and methamphetamine: Cellular and molecular mechanisms of toxicity potentiation. Neurotoxicity Research, 2007, 12, 181-204.	2.7	56
126	Identification of Putative Biomarkers in the Serum of Marijuana Users by Surfaceâ€Enhanced Laser Desorption/Ionization Time of Flight Mass Spectrometry (SELDIâ€TOFâ€MS). FASEB Journal, 2007, 21, A421.	0.5	0

#	Article	IF	CITATIONS
127	Neurological Assessments of Marijuana Users. , 2006, 123, 255-268.		5
128	Serial Analysis of Gene Expression in the Rat Striatum Following Methamphetamine Administration. Annals of the New York Academy of Sciences, 2006, 1074, 13-30.	3.8	7
129	Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review. Neurotoxicity Research, 2005, 8, 199-206.	2.7	114
130	Amphetamine induces apoptosis of medium spiny striatal projection neurons via the mitochondriaâ€dependent pathway. FASEB Journal, 2005, 19, 1-22.	0.5	67
131	Calcineurin/NFAT-induced up-regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 868-873.	7.1	208
132	Neuropeptide Y Protects against Methamphetamine-Induced Neuronal Apoptosis in the Mouse Striatum. Journal of Neuroscience, 2005, 25, 5273-5279.	3.6	86
133	Altered brain tissue composition in heavy marijuana users. Drug and Alcohol Dependence, 2005, 77, 23-30.	3.2	233
134	Neuropsychiatric effects of cocaine use disorders. Journal of the National Medical Association, 2005, 97, 1504-15.	0.8	38
135	Methamphetamine induces neuronal apoptosis via crossâ€ŧalks between endoplasmic reticulum and mitochondriaâ€dependent death cascades. FASEB Journal, 2004, 18, 238-251.	0.5	255
136	Histological evidence supporting a role for the striatal neurokinin-1 receptor in methamphetamine-induced neurotoxicity in the mouse brain. Brain Research, 2004, 1007, 124-131.	2.2	30
137	Methamphetamine-induced gene expression profiles in the striatum of male rat pups exposed to the drug in utero. Developmental Brain Research, 2003, 147, 153-162.	1.7	13
138	Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. NeuroImage, 2003, 19, 1095-1102.	4.2	265
139	Methylenedioxymethamphetamine (MDMA, Ecstasy) neurotoxicity: cellular and molecular mechanisms. Brain Research Reviews, 2003, 42, 155-168.	9.0	171
140	Speed kills: cellular and molecular bases of methamphetamineâ€induced nerve terminal degeneration and neuronal apoptosis. FASEB Journal, 2003, 17, 1775-1788.	0.5	265
141	Molecular Neurotoxicology of 6-Hydroxydopamine and Methamphetamine. , 2003, , .		0
142	Methamphetamine Causes Coordinate Regulation of Src, Cas, Crk, and the Jun N-Terminal Kinase–Jun Pathway. Molecular Pharmacology, 2002, 61, 1124-1131.	2.3	63
143	cDNA array analysis of gene expression profiles in the striata of wildâ€ŧype and Cu/Zn superoxide dismutase transgenic mice treated with neurotoxic doses of amphetamine. FASEB Journal, 2002, 16, 1379-1388.	0.5	19
144	Analysis of Ecstasy (MDMA)â€induced transcriptional responses in the rat cortex. FASEB Journal, 2002, 16, 1887-1894.	0.5	31

#	Article	IF	CITATIONS
145	Mice with Partial Deficiency of c-Jun Show Attenuation of Methamphetamine-Induced Neuronal Apoptosis. Molecular Pharmacology, 2002, 62, 993-1000.	2.3	49
146	Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology, 2002, 42, 837-845.	4.1	113
147	Methamphetamine-induced increase in striatal p53 DNA-binding activity is attenuated in Cu,Zn-superoxide dismutase transgenic mice. Neuroscience Letters, 2002, 325, 191-194.	2.1	18
148	Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease. Journal of Neurochemistry, 2002, 80, 101-110.	3.9	361
149	Distinct gene expression signatures in the striata of wild-type and heterozygous c-fos knockout mice following methamphetamine administration: Evidence from cDNA array analyses. Synapse, 2002, 44, 211-226.	1.2	35
150	Analysis of methamphetamine-induced changes in the expression of integrin family members in the cortex of wild-type and c-fos knockout mice. Neurotoxicity Research, 2002, 4, 617-623.	2.7	5
151	Amphetamine-induced toxicity in dopamine terminals in CD-1 and C57BL/6J mice: complex roles for oxygen-based species and temperature regulation. Neuroscience, 2001, 107, 265-274.	2.3	43
152	Methamphetamine increases expression of the apoptotic c-myc and l-myc genes in the mouse brain. Molecular Brain Research, 2001, 90, 202-204.	2.3	14
153	Methamphetamine causes widespread apoptosis in the mouse brain: evidence from using an improved TUNEL histochemical method. Molecular Brain Research, 2001, 93, 64-69.	2.3	185
154	Molecular neurotoxicological models of Parkinsonism: focus on genetic manipulation of mice. Parkinsonism and Related Disorders, 2001, 8, 85-90.	2.2	12
155	Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: Evidence from cDNA array. Synapse, 2001, 41, 40-48.	1.2	99
156	Delta opioid peptide [D-Ala2, D-Leu5]enkephalin causes a near complete blockade of the neuronal damage induced by a single high dose of methamphetamine: Examining the role of p53. Synapse, 2001, 39, 305-312.	1.2	20
157	Methamphetamine causes differential regulation of proâ€death and antiâ€death Bclâ€2 genes in the mouse neocortex. FASEB Journal, 2001, 15, 1745-1752.	0.5	149
158	Methamphetamine-Induced Neurotoxicity Is Attenuated in Transgenic Mice with a Null Mutation for Interleukin-6. Molecular Pharmacology, 2000, 58, 1247-1256.	2.3	124
159	Bcl-2 overexpression attenuates dopamine-induced apoptosis in an immortalized neural cell line by suppressing the production of reactive oxygen species. Synapse, 2000, 35, 228-233.	1.2	36
160	Serum Withdrawal Potentiates the Toxic Effects of Methamphetamine <i>in Vitro</i> . Annals of the New York Academy of Sciences, 2000, 914, 82-91.	3.8	5
161	Protective Effect of Supplemental Superoxide Dismutase on Survival of Neuronal Cells During Starvation: Requirement for Cytosolic Distribution. Journal of Molecular Neuroscience, 2000, 14, 155-166.	2.3	9
162	Effects of methamphetamine-induced neurotoxicity on the development of neural circuitry: a hypothesis. Brain Research Reviews, 2000, 34, 103-118.	9.0	75

#	Article	IF	CITATIONS
163	Direct interactions of methamphetamine with the nucleus. Molecular Brain Research, 2000, 80, 237-243.	2.3	24
164	Methamphetamine-induced apoptosis is attenuated in the striata of copper–zinc superoxide dismutase transgenic mice. Molecular Brain Research, 2000, 83, 121-124.	2.3	84
165	Null Mutation of c-fos Causes Exacerbation of Methamphetamine-Induced Neurotoxicity. Journal of Neuroscience, 1999, 19, 10107-10115.	3.6	104
166	Methamphetamine administration causes overexpression of nNOS in the mouse striatum. Brain Research, 1999, 851, 254-257.	2.2	70
167	[d-Ala2, d-Leu5]enkephalin blocks the methamphetamine-induced c-fos mRNA increase in mouse striatum. European Journal of Pharmacology, 1999, 366, R7-R8.	3.5	20
168	Reversal by [d-Ala2,d-Leu5]enkephalin of the dopamine transporter loss caused by methamphetamine. European Journal of Pharmacology, 1999, 372, R5-R7.	3.5	17
169	Dual mechanism of Fas-induced cell death in neuroglioma cells: a role for reactive oxygen species. Molecular Brain Research, 1999, 72, 158-165.	2.3	38
170	Methamphetamine-Induced Changes in Antioxidant Enzymes and Lipid Peroxidation in Copper/Zinc-Superoxide Dismutase Transgenic Mice. Annals of the New York Academy of Sciences, 1998, 844, 92-102.	3.8	120
171	Effects of toxic doses of methamphetamine (METH) on dopamine D1 receptors in the mouse brain. Brain Research, 1998, 786, 240-242.	2.2	18
172	Melatonin attenuates methamphetamine-induced toxic effects on dopamine and serotonin terminals in mouse brain. Synapse, 1998, 30, 150-155.	1.2	43
173	Superoxide radicals are mediators of the effects of methamphetamine on Zif268 (Egr-1, NGFI-A) in the brain: evidence from using CuZn superoxide dismutase transgenic mice. Molecular Brain Research, 1998, 58, 209-216.	2.3	31
174	Methamphetamine-induced increase in striatal NF-κB DNA-binding activity is attenuated in superoxide dismutase transgenic mice. Molecular Brain Research, 1998, 60, 305-309.	2.3	56
175	Invited Review Free radicals and the pathobiology of brain dopamine systems. Neurochemistry International, 1998, 32, 117-131.	3.8	469
176	The Neuropsychiatry of Chronic Cocaine Abuse. Journal of Neuropsychiatry and Clinical Neurosciences, 1998, 10, 280-289.	1.8	148
177	Kainate-induced hippocampal DNA damage is attenuated in superoxide dismutase transgenic mice. Molecular Brain Research, 1997, 48, 145-148.	2.3	31
178	Differential toxic effects of methamphetamine (METH) and methylenedioxymethamphetamine (MDMA) in multidrug-resistant (mdr1a) knockout mice. Brain Research, 1997, 769, 340-346.	2.2	49
179	Methamphetamine-induced serotonin neurotoxicity is attenuated in p53-knockout mice. Brain Research, 1997, 768, 345-348.	2.2	23
180	Methamphetamine induces apoptosis in immortalized neural cells: Protection by the Proto-Oncogene, bcl-2. , 1997, 25, 176-184.		121

#	Article	lF	CITATIONS
181	p53â€Knockout Mice Are Protected Against the Longâ€Term Effects of Methamphetamine on Dopaminergic Terminals and Cell Bodies. Journal of Neurochemistry, 1997, 69, 780-790.	3.9	108
182	Methamphetamine induces apoptosis in immortalized neural cells: Protection by the Protoâ€Oncogene, bclâ€2. Synapse, 1997, 25, 176-184.	1.2	3
183	The Possible Involvement of Death-Related Genes in Methamphetamine-Induced Apoptosis. , 1997, , 323-325.		0
184	Nitric Oxide Is a Mediator of Methamphetamine (METH)-Induced Neurotoxicity Annals of the New York Academy of Sciences, 1996, 801, 174-186.	3.8	48
185	Differential Reinforcing Effects of Cocaine and GBR-12909: Biochemical Evidence for Divergent Neuroadaptive Changes in the Mesolimbic Dopaminergic System. Journal of Neuroscience, 1996, 16, 7416-7427.	3.6	78
186	Autoradiographic evidence for methamphetamine-induced striatal dopaminergic loss in mouse brain: attenuation in CuZn-superoxide dismutase transgenic mice. Brain Research, 1996, 714, 95-103.	2.2	112
187	Chronic cocaine use as a neuropsychiatric syndrome: A model for debate. , 1996, 22, 28-34.		16
188	AP-1 DNA-binding activation by methamphetamine involves oxidative stress. , 1996, 24, 213-217.		25
189	Superoxide radicals mediate the biochemical effects of methylenedioxymethamphetamine (MDMA): Evidence from using CuZn-superoxide dismutase transgenic mice. Synapse, 1995, 21, 169-176.	1.2	78
190	Methamphetamine-induced serotonin neurotoxicity is mediated by superoxide radicals. Brain Research, 1995, 677, 345-347.	2.2	79
191	Transgenic superoxide dismutase mice differ in opioid-induced analgesia. European Journal of Pharmacology, 1995, 283, 227-232.	3.5	9
192	Autoradiographic distribution of Mu opioid receptors in the brains of Cu/Zn-superoxide dismutase mice. Synapse, 1994, 17, 76-83.	1.2	7
193	CuZn-superoxide dismutase (CuZnSOD) transgenic mice show resistance to the lethal effects of methylenedioxyamphetamine (MDA) and of methylenedioxymethamphetamine (MDMA). Brain Research, 1994, 655, 259-262.	2.2	92
194	Methamphetamine (METH) causes reactive gliosis in vitro: Attenuation by the ADP-ribosylation (ADPR) inhibitor, benzamide. Life Sciences, 1994, 55, PL51-PL54.	4.3	21
195	Free radicals and neurodegeneration. Trends in Neurosciences, 1994, 17, 193-194.	8.6	19
196	Involvement of Oxygenâ€based Radicals in Methamphetamineâ€induced Neurotoxicity: Evidence from the Use of CuZnSOD Transgenic Mice ^a . Annals of the New York Academy of Sciences, 1994, 738, 388-391.	3.8	50
197	Rapid Communication: Attenuation of Methamphetamineâ€Induced Neurotoxicity in Copper/Zinc Superoxide Dismutase Transgenic Mice. Journal of Neurochemistry, 1994, 62, 380-383.	3.9	241
198	Autoradiographic distribution of [3H]neurotensin receptors in the brains of superoxide dismutase transgenic mice. Synapse, 1993, 14, 24-33.	1.2	12

#	Article	IF	CITATIONS
199	Quantitative in situ hybridization evidence for differential regulation of proenkephalin and dopamine D2 receptor mRNA levels in the rat striatum: effects of unilateral intrastriatal injections of 6-hydroxydopamine. Molecular Brain Research, 1992, 12, 59-67.	2.3	40
200	The intrastriatal 6-hydroxydopamine model of hemiparkinsonism: quantitative receptor autoradiographic evidence of correlation between circling behavior and presynaptic as well as postsynatic nigrostriatal markers in the rat. Brain Research, 1992, 595, 316-326.	2.2	57
201	Retrograde degeneration of nigrostriatal neurons induced by intrastriatal 6-hydroxydopamine injection in rats. Brain Research Bulletin, 1991, 26, 301-307.	3.0	136
202	Long-term behavioral and biochemical effects of 6-hydroxydopamine injections in rat caudate-putamen. Brain Research Bulletin, 1991, 26, 707-713.	3.0	62
203	Possible Involvement of Free Radicals in Neuroleptic-Induced Movement Disorders Evidence from Treatment of Tardive Dyskinesia with Vitamin E. Annals of the New York Academy of Sciences, 1989, 570, 176-185.	3.8	123
204	Vitamin E attenuates the toxic effects of intrastriatal injection of 6-hydroxydopamine (6-OHDA) in rats: Behavioral and biochemical evidence. Brain Research, 1989, 476, 10-15.	2.2	163
205	Regional effects of 6-hydroxydopamine (6-OHDA) on free radical scavengers in rat brain. Brain Research, 1989, 504, 139-141.	2.2	56
206	A unifying theory of movement and madness: Involvement of free radicals in disorders of the isodendritic core of the brainstem. Medical Hypotheses, 1988, 27, 59-63.	1.5	49
207	Free Radical Mechanisms in the Central Nervous System: An Overview. International Journal of Neuroscience, 1988, 40, 13-18.	1.6	64