Richard Wainscoat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3037387/publications.pdf

Version: 2024-02-01

57758 46799 8,134 100 44 citations h-index papers

89 g-index 101 101 101 8513 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Progenitor and close-in circumstellar medium of type II supernova 2020fqv from high-cadence photometry and ultra-rapid UV spectroscopy. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2777-2797.	4.4	17
2	Regions of slow apparent motion of close approaching asteroids: The case of 2019 OK. Icarus, 2022, 373, 114735.	2.5	3
3	Orbital stability analysis and photometric characterization of the second Earth Trojan asteroid 2020 XL5. Nature Communications, 2022, 13, 447.	12.8	10
4	Characterizing Crosstalk within the Pan-STARRS GPC1 Camera. Publications of the Astronomical Society of the Pacific, 2022, 134, 024501.	3.1	0
5	Possible Activity in 468861 (2013 LU28). Planetary Science Journal, 2022, 3, 34.	3.6	2
6	Apophis Planetary Defense Campaign. Planetary Science Journal, 2022, 3, 123.	3.6	4
7	International Asteroid Warning Network Timing Campaign: 2019 XS. Planetary Science Journal, 2022, 3, 156.	3.6	6
8	Characterizing the Manx Candidate A/2018 V3. Planetary Science Journal, 2021, 2, 33.	3.6	2
9	The Young Supernova Experiment: Survey Goals, Overview, and Operations. Astrophysical Journal, 2021, 908, 143.	4.5	52
10	C/2014 UN ₂₇₁ (Bernardinelli-Bernstein): The Nearly Spherical Cow of Comets. Astrophysical Journal Letters, 2021, 921, L37.	8.3	21
11	Establishing Earth's Minimoon Population through Characterization of Asteroid 2020 CD ₃ . Astronomical Journal, 2020, 160, 277.	4.7	16
12	Orphan GRB Afterglow Searches with the Pan-STARRS1 COSMOS Survey. Astrophysical Journal, 2020, 897, 69.	4. 5	14
13	Photometric Classification of 2315 Pan-STARRS1 Supernovae with Superphot. Astrophysical Journal, 2020, 905, 93.	4.5	15
14	SuperRAENN: A Semisupervised Supernova Photometric Classification Pipeline Trained on Pan-STARRS1 Medium-Deep Survey Supernovae. Astrophysical Journal, 2020, 905, 94.	4 . 5	43
15	The Pan-STARRS Data-processing System. Astrophysical Journal, Supplement Series, 2020, 251, 3.	7.7	68
16	Pan-STARRS Photometric and Astrometric Calibration. Astrophysical Journal, Supplement Series, 2020, 251, 6.	7.7	138
17	Pan-STARRS Pixel Processing: Detrending, Warping, Stacking. Astrophysical Journal, Supplement Series, 2020, 251, 4.	7.7	77
18	Pan-STARRS Pixel Analysis: Source Detection and Characterization. Astrophysical Journal, Supplement Series, 2020, 251, 5.	7.7	65

#	Article	IF	CITATIONS
19	The Pan-STARRS1 Database and Data Products. Astrophysical Journal, Supplement Series, 2020, 251, 7.	7.7	348
20	Asteroid Discovery and Light Curve Extraction Using the Hough Transform: A Rotation Period Study for Subkilometer Main-belt Asteroids. Astronomical Journal, 2020, 159, 25.	4.7	6
21	Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1. Astronomy and Astrophysics, 2019, 626, A117.	5.1	13
22	The Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope. Astrophysical Journal, 2019, 881, 19.	4.5	67
23	Precision Distances to Dwarf Galaxies and Globular Clusters from Pan-STARRS1 3Ï€ RR Lyrae. Astrophysical Journal, 2019, 871, 49.	4.5	20
24	Searching for Super-fast Rotators Using the Pan-STARRS 1. Astrophysical Journal, Supplement Series, 2019, 241, 6.	7.7	12
25	Disintegration of active asteroid P/2016 G1 (PANSTARRS). Astronomy and Astrophysics, 2019, 628, A48.	5.1	7
26	Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters. Astrophysical Journal, 2018, 857, 51.	4.5	116
27	Charge Diffusion Variations in Pan-STARRS1 CCDs. Publications of the Astronomical Society of the Pacific, 2018, 130, 065002.	3.1	6
28	Photometry and Proper Motions of M, L, and T Dwarfs from the Pan-STARRS1 3 <i>i; ∈</i> i> Survey. Astrophysical Journal, Supplement Series, 2018, 234, 1.	7.7	86
29	The Foundation Supernova Survey: motivation, design, implementation, and first data release. Monthly Notices of the Royal Astronomical Society, 2018, 475, 193-219.	4.4	88
30	A Color-locus Method for Mapping R _V Using Ensembles of Stars. Astrophysical Journal, 2018, 854, 79.	4.5	2
31	The Pan-STARRS1 Proper-motion Survey for Young Brown Dwarfs in Nearby Star-forming Regions. I. Taurus Discoveries and a Reddening-free Classification Method for Ultracool Dwarfs. Astrophysical Journal, 2018, 858, 41.	4.5	34
32	Cepheids in M31: The PAndromeda Cepheid Sample. Astronomical Journal, 2018, 156, 130.	4.7	15
33	Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: another piece of the puzzle. Monthly Notices of the Royal Astronomical Society, 2018, 474, 197-218.	4.4	50
34	The Profile of the Galactic Halo from Pan-STARRS1 3Ï€ RR Lyrae. Astrophysical Journal, 2018, 859, 31.	4.5	33
35	Galactic reddening in 3D from stellar photometry – an improved map. Monthly Notices of the Royal Astronomical Society, 2018, 478, 651-666.	4.4	337
36	Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey. Astrophysical Journal, 2018, 852, 81.	4.5	88

#	Article	IF	Citations
37	The Splitting of Double-component Active Asteroid P/2016 J1 (PANSTARRS). Astrophysical Journal Letters, 2017, 837, L3.	8.3	24
38	Beginning of Activity in Long-period Comet C/2015 ER61 (PANSTARRS). Astronomical Journal, 2017, 153, 206.	4.7	16
39	Optimizing search strategies for near Earth Objects: Lessons learned from Pan-STARRS1., 2017, , .		0
40	A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature, 2017, 551, 75-79.	27.8	601
41	The Pan-STARRS1 Medium-deep Survey: Star Formation Quenching in Group and Cluster Environments. Astrophysical Journal, 2017, 845, 74.	4.5	15
42	A Search for L/T Transition Dwarfs with Pan-STARRS1 and WISE. III. Young L Dwarf Discoveries and Proper Motion Catalogs in Taurus and Scorpius–Centaurus. Astrophysical Journal, 2017, 837, 95.	4.5	27
43	The Geometry of the Sagittarius Stream from Pan-STARRS1 3Ï€ RR Lyrae. Astrophysical Journal, 2017, 850, 96.	4.5	48
44	CO-driven Activity in Comet C/2017 K2 (PANSTARRS). Astrophysical Journal Letters, 2017, 849, L8.	8.3	35
45	A population of highly energetic transient events in the centres of active galaxies. Nature Astronomy, 2017, 1, 865-871.	10.1	53
46	Measuring the Properties of Dark Energy with Photometrically Classified Pan-STARRS Supernovae. I. Systematic Uncertainty from Core-collapse Supernova Contamination. Astrophysical Journal, 2017, 843, 6.	4.5	47
47	Physical Properties of 15 Quasars at zÂ≳Â6.5. Astrophysical Journal, 2017, 849, 91.	4.5	230
48	Detection of Time Lags between Quasar Continuum Emission Bands Based On Pan-STARRS Light Curves. Astrophysical Journal, 2017, 836, 186.	4.5	50
49	Identification of partially resolved binaries in Pan-STARRSÂ1 data. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3499-3515.	4.4	10
50	Pan-Planets: Searching for hot Jupiters around cool dwarfs. Astronomy and Astrophysics, 2016, 587, A49.	5.1	29
51	M DWARF ACTIVITY IN THE PAN-STARRS1 MEDIUM-DEEP SURVEY: FIRST CATALOG AND ROTATION PERIODS. Astrophysical Journal, 2016, 833, 281.	4.5	10
52	FRAGMENTATION KINEMATICS IN COMET 332P/IKEYA–MURAKAMI. Astrophysical Journal Letters, 2016, 829, L8.	8.3	25
53	THE OPTICAL–INFRARED EXTINCTION CURVE AND ITS VARIATION IN THE MILKY WAY. Astrophysical Journal, 2016, 821, 78.	4.5	185
54	The Pan-STARRS search for Near Earth Objects. , 2016, , .		3

#	Article	IF	CITATIONS
55	A GLOBAL ASTROMETRIC SOLUTION FOR PAN-STARRS REFERENCED TO ICRF2. Astronomical Journal, 2016, 152, 53.	4.7	10
56	A SEARCH FOR AN OPTICAL COUNTERPART TO THE GRAVITATIONAL-WAVE EVENT GW151226. Astrophysical Journal Letters, 2016, 827, L40.	8.3	38
57	THE PAN-STARRS1 DISTANT zÂ>Â5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE. Astrophysical Journal, Supplement Series, 2016, 227, 11.	7.7	266
58	THE PAN-STARRS 1 DISCOVERIES OF FIVE NEW NEPTUNE TROJANS. Astronomical Journal, 2016, 152, 147.	4.7	11
59	A systematic search for changing-look quasars in SDSS. Monthly Notices of the Royal Astronomical Society, 2016, 457, 389-404.	4.4	215
60	A Pan-STARRSÂ1 study of the relationship between wide binarity and planet occurrence in the <i>Kepler < /i> field. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4212-4230.</i>	4.4	35
61	FINDING, CHARACTERIZING, AND CLASSIFYING VARIABLE SOURCES IN MULTI-EPOCH SKY SURVEYS: QSOs AND RR LYRAE IN PS1 3Ï€ DATA. Astrophysical Journal, 2016, 817, 73.	4.5	53
62	SUPERLUMINOUS SUPERNOVA SN 2015bn IN THE NEBULAR PHASE: EVIDENCE FOR THE ENGINE-POWERED EXPLOSION OF A STRIPPED MASSIVE STAR. Astrophysical Journal Letters, 2016, 828, L18.	8.3	88
63	The Pan-STARRS search for Near Earth Objects. Proceedings of the International Astronomical Union, 2015, 10, 293-298.	0.0	6
64	A THREE-DIMENSIONAL MAP OF MILKY WAY DUST. Astrophysical Journal, 2015, 810, 25.	4.5	408
65	A SEARCH FOR L/T TRANSITION DWARFS WITH PAN-STARRS1 AND <i>WISE</i> . II. L/T TRANSITION ATMOSPHERES AND YOUNG DISCOVERIES. Astrophysical Journal, 2015, 814, 118.	4.5	57
66	Machine learning for transient discovery in Pan-STARRS1 difference imaging. Monthly Notices of the Royal Astronomical Society, 2015, 449, 451-466.	4.4	51
67	THE STRUCTURE AND STELLAR CONTENT OF THE OUTER DISKS OF GALAXIES: A NEW VIEW FROM THE Pan-STARRS1 MEDIUM DEEP SURVEY. Astrophysical Journal, 2015, 800, 120.	4.5	43
68	TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1. Astrophysical Journal, 2015, 799, 208.	4. 5	149
69	Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1206-1231.	4.4	69
70	ZOOMING IN ON THE PROGENITORS OF SUPERLUMINOUS SUPERNOVAE WITH THE <i>HST </i> Lournal, 2015, 804, 90.	4.5	86
71	DISCOVERY OF EIGHT <i>>z</i> >â^1/4 6 QUASARS FROM Pan-STARRS1. Astronomical Journal, 2014, 148, 14.	4.7	126
72	The superluminous supernova PS1-11ap: bridging the gap between low and high redshift. Monthly Notices of the Royal Astronomical Society, 2014, 437, 656-674.	4.4	64

#	Article	IF	CITATIONS
73	HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES. Astrophysical Journal, 2014, 787, 138.	4.5	221
74	CHARACTERIZATION OF THE PRAESEPE STAR CLUSTER BY PHOTOMETRY AND PROPER MOTIONS WITH 2MASS, PPMXL, AND Pan-STARRS. Astrophysical Journal, 2014, 784, 57.	4.5	22
7 5	MEASURING DISTANCES AND REDDENINGS FOR A BILLION STARS: TOWARD A 3D DUST MAP FROM PAN-STARRS 1. Astrophysical Journal, 2014, 783, 114.	4.5	84
76	Detecting Earth's temporarily-captured natural satellitesâ€"Minimoons. Icarus, 2014, 241, 280-297.	2.5	35
77	MULTI-WAVELENGTH OBSERVATIONS OF COMET C/2011 L4 (PAN-STARRS). Astrophysical Journal Letters, 2014, 784, L23.	8.3	26
78	A MAP OF DUST REDDENING TO 4.5 kpc FROM Pan-STARRS1. Astrophysical Journal, 2014, 789, 15.	4.5	85
79	The Pan-STARRS Moving Object Processing System. Publications of the Astronomical Society of the Pacific, 2013, 125, 357-395.	3.1	124
80	SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL. Astrophysical Journal, 2013, 770, 128.	4.5	332
81	OUTGASSING BEHAVIOR OF C/2012 S1 (ISON) FROM 2011 SEPTEMBER TO 2013 JUNE. Astrophysical Journal Letters, 2013, 776, L20.	8.3	25
82	The Pan-STARRS1 Small Area Survey 2. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1825-1839.	4.4	32
83	THE EXTREMELY RED, YOUNG L DWARF PSO J318.5338–22.8603: A FREE-FLOATING PLANETARY-MASS ANALOG TO DIRECTLY IMAGED YOUNG GAS-GIANT PLANETS. Astrophysical Journal Letters, 2013, 777, L20.	G 8.3	203
84	A SEARCH FOR L/T TRANSITION DWARFS WITH Pan-STARRS1 AND <i>WISE</i> : DISCOVERY OF SEVEN NEARBY OBJECTS INCLUDING TWO CANDIDATE SPECTROSCOPIC VARIABLES. Astrophysical Journal, 2013, 777, 84.	4.5	26
85	PROPERTIES OF M31. III. CANDIDATE BEAT CEPHEIDS FROM PS1 PANDROMEDA DATA AND THEIR IMPLICATION ON METALLICITY GRADIENT. Astrophysical Journal, 2013, 777, 35.	4.5	12
86	PAndromeda—FIRST RESULTS FROM THE HIGH-CADENCE MONITORING OF M31 WITH Pan-STARRS 1. Astronomical Journal, 2012, 143, 89.	4.7	34
87	THE PHOTOMETRIC CLASSIFICATION SERVER FOR Pan-STARRS1. Astrophysical Journal, 2012, 746, 128.	4.5	31
88	SN 2010ay IS A LUMINOUS AND BROAD-LINED TYPE Ic SUPERNOVA WITHIN A LOW-METALLICITY HOST GALAXY. Astrophysical Journal, 2012, 756, 184.	4. 5	42
89	ULTRALUMINOUS SUPERNOVAE AS A NEW PROBE OF THE INTERSTELLAR MEDIUM IN DISTANT GALAXIES. Astrophysical Journal Letters, 2012, 755, L29.	8.3	57
90	HIP 38939B: A NEW BENCHMARK T DWARF IN THE GALACTIC PLANE DISCOVERED WITH Pan-STARRS1. Astrophysical Journal, 2012, 755, 94.	4.5	44

#	Article	IF	CITATION
91	PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY. Astrophysical Journal, 2012, 756, 158.	4.5	311
92	THE Pan-STARRS1 PHOTOMETRIC SYSTEM. Astrophysical Journal, 2012, 750, 99.	4.5	729
93	DISPLAYING THE HETEROGENEITY OF THE SN 2002cx-LIKE SUBCLASS OF TYPE Ia SUPERNOVAE WITH OBSERVATIONS OF THE Pan-STARRS-1 DISCOVERED SN 2009ku. Astrophysical Journal Letters, 2011, 731, L11.	8.3	52
94	A SEARCH FOR HIGH PROPER MOTION T DWARFS WITH Pan-STARRS1 + 2MASS + $\langle i \rangle$ WISE $\langle i \rangle$. Astrophysical Journal Letters, 2011, 740, L32.	8.3	40
95	Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT <i>z</i> 2011, 743, 114.	4.5	168
96	FOUR NEW T DWARFS IDENTIFIED IN Pan-STARRS 1 COMMISSIONING DATA. Astronomical Journal, 2011, 142, 77.	4.7	32
97	ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE. Astrophysical Journal Letters, 2010, 724, L16-L21.	8.3	217
98	Detection of Earth-impacting asteroids with the next generation all-sky surveys. Icarus, 2009, 203, 472-485.	2.5	32
99	Discovery of a Methane Dwarf from the I[CLC]f[/CLC]A Deep Survey. Astrophysical Journal, 2002, 568, L107-L111.	4.5	21
100	Smooth dark spiral arms in the flocculent galaxy NGC2841. Nature, 1996, 381, 674-676.	27.8	33