Richard Wainscoat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3037387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE Pan-STARRS1 PHOTOMETRIC SYSTEM. Astrophysical Journal, 2012, 750, 99.	4.5	729
2	A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature, 2017, 551, 75-79.	27.8	601
3	A THREE-DIMENSIONAL MAP OF MILKY WAY DUST. Astrophysical Journal, 2015, 810, 25.	4.5	408
4	The Pan-STARRS1 Database and Data Products. Astrophysical Journal, Supplement Series, 2020, 251, 7.	7.7	348
5	Galactic reddening in 3D from stellar photometry – an improved map. Monthly Notices of the Royal Astronomical Society, 2018, 478, 651-666.	4.4	337
6	SUPER-LUMINOUS TYPE IC SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL. Astrophysical Journal, 2013, 770, 128.	4.5	332
7	PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY. Astrophysical Journal, 2012, 756, 158.	4.5	311
8	THE PAN-STARRS1 DISTANT zÂ>Â5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE. Astrophysical Journal, Supplement Series, 2016, 227, 11.	7.7	266
9	Physical Properties of 15 Quasars at zÂ≳Â6.5. Astrophysical Journal, 2017, 849, 91.	4.5	230
10	HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES. Astrophysical Journal, 2014, 787, 138.	4.5	221
11	ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE IC SUPERNOVAE. Astrophysical Journal Letters, 2010, 724, L16-L21.	8.3	217
12	A systematic search for changing-look quasars in SDSS. Monthly Notices of the Royal Astronomical Society, 2016, 457, 389-404.	4.4	215
13	THE EXTREMELY RED, YOUNG L DWARF PSO J318.5338–22.8603: A FREE-FLOATING PLANETARY-MASS ANALOG TO DIRECTLY IMAGED YOUNG GAS-GIANT PLANETS. Astrophysical Journal Letters, 2013, 777, L20.	С _{8.3}	203
14	THE OPTICAL–INFRARED EXTINCTION CURVE AND ITS VARIATION IN THE MILKY WAY. Astrophysical Journal, 2016, 821, 78.	4.5	185
15	Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT <i>z</i> â‰^ 0.9. Astrophysical Journal, 2011, 743, 114.	4.5	168
16	TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1. Astrophysical Journal, 2015, 799, 208.	4.5	149
17	Pan-STARRS Photometric and Astrometric Calibration. Astrophysical Journal, Supplement Series, 2020, 251, 6.	7.7	138
18	DISCOVERY OF EIGHT <i>z</i> a^1/4 6 QUASARS FROM Pan-STARRS1. Astronomical Journal, 2014, 148, 14.	4.7	126

RICHARD WAINSCOAT

#	Article	IF	CITATIONS
19	The Pan-STARRS Moving Object Processing System. Publications of the Astronomical Society of the Pacific, 2013, 125, 357-395.	3.1	124
20	Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters. Astrophysical Journal, 2018, 857, 51.	4.5	116
21	The Foundation Supernova Survey: motivation, design, implementation, and first data release. Monthly Notices of the Royal Astronomical Society, 2018, 475, 193-219.	4.4	88
22	Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey. Astrophysical Journal, 2018, 852, 81.	4.5	88
23	SUPERLUMINOUS SUPERNOVA SN 2015bn IN THE NEBULAR PHASE: EVIDENCE FOR THE ENGINE-POWERED EXPLOSION OF A STRIPPED MASSIVE STAR. Astrophysical Journal Letters, 2016, 828, L18.	8.3	88
24	ZOOMING IN ON THE PROGENITORS OF SUPERLUMINOUS SUPERNOVAE WITH THE <i>HST</i> . Astrophysical Journal, 2015, 804, 90.	4.5	86
25	Photometry and Proper Motions of M, L, and T Dwarfs from the Pan-STARRS1 3 <i>Ï€</i> Survey. Astrophysical Journal, Supplement Series, 2018, 234, 1.	7.7	86
26	A MAP OF DUST REDDENING TO 4.5 kpc FROM Pan-STARRS1. Astrophysical Journal, 2014, 789, 15.	4.5	85
27	MEASURING DISTANCES AND REDDENINGS FOR A BILLION STARS: TOWARD A 3D DUST MAP FROM PAN-STARRS 1. Astrophysical Journal, 2014, 783, 114.	4.5	84
28	Pan-STARRS Pixel Processing: Detrending, Warping, Stacking. Astrophysical Journal, Supplement Series, 2020, 251, 4.	7.7	77
29	Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1206-1231.	4.4	69
30	The Pan-STARRS Data-processing System. Astrophysical Journal, Supplement Series, 2020, 251, 3.	7.7	68
31	The Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope. Astrophysical Journal, 2019, 881, 19.	4.5	67
32	Pan-STARRS Pixel Analysis: Source Detection and Characterization. Astrophysical Journal, Supplement Series, 2020, 251, 5.	7.7	65
33	The superluminous supernova PS1-11ap: bridging the gap between low and high redshift. Monthly Notices of the Royal Astronomical Society, 2014, 437, 656-674.	4.4	64
34	ULTRALUMINOUS SUPERNOVAE AS A NEW PROBE OF THE INTERSTELLAR MEDIUM IN DISTANT GALAXIES. Astrophysical Journal Letters, 2012, 755, L29.	8.3	57
35	A SEARCH FOR L/T TRANSITION DWARFS WITH PAN-STARRS1 AND <i>WISE</i> . II. L/T TRANSITION ATMOSPHERES AND YOUNG DISCOVERIES. Astrophysical Journal, 2015, 814, 118.	4.5	57
36	FINDING, CHARACTERIZING, AND CLASSIFYING VARIABLE SOURCES IN MULTI-EPOCH SKY SURVEYS: QSOs AND RR LYRAE IN PS1 3Ï€ DATA. Astrophysical Journal, 2016, 817, 73.	4.5	53

#	Article	IF	CITATIONS
37	A population of highly energetic transient events in the centres of active galaxies. Nature Astronomy, 2017, 1, 865-871.	10.1	53
38	DISPLAYING THE HETEROGENEITY OF THE SN 2002cx-LIKE SUBCLASS OF TYPE Ia SUPERNOVAE WITH OBSERVATIONS OF THE Pan-STARRS-1 DISCOVERED SN 2009ku. Astrophysical Journal Letters, 2011, 731, L11.	8.3	52
39	The Young Supernova Experiment: Survey Goals, Overview, and Operations. Astrophysical Journal, 2021, 908, 143.	4.5	52
40	Machine learning for transient discovery in Pan-STARRS1 difference imaging. Monthly Notices of the Royal Astronomical Society, 2015, 449, 451-466.	4.4	51
41	Detection of Time Lags between Quasar Continuum Emission Bands Based On Pan-STARRS Light Curves. Astrophysical Journal, 2017, 836, 186.	4.5	50
42	Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: another piece of the puzzle. Monthly Notices of the Royal Astronomical Society, 2018, 474, 197-218.	4.4	50
43	The Geometry of the Sagittarius Stream from Pan-STARRS1 3Ï€ RR Lyrae. Astrophysical Journal, 2017, 850, 96.	4.5	48
44	Measuring the Properties of Dark Energy with Photometrically Classified Pan-STARRS Supernovae. I. Systematic Uncertainty from Core-collapse Supernova Contamination. Astrophysical Journal, 2017, 843, 6.	4.5	47
45	HIP 38939B: A NEW BENCHMARK T DWARF IN THE GALACTIC PLANE DISCOVERED WITH Pan-STARRS1. Astrophysical Journal, 2012, 755, 94.	4.5	44
46	THE STRUCTURE AND STELLAR CONTENT OF THE OUTER DISKS OF GALAXIES: A NEW VIEW FROM THE Pan-STARRS1 MEDIUM DEEP SURVEY. Astrophysical Journal, 2015, 800, 120.	4.5	43
47	SuperRAENN: A Semisupervised Supernova Photometric Classification Pipeline Trained on Pan-STARRS1 Medium-Deep Survey Supernovae. Astrophysical Journal, 2020, 905, 94.	4.5	43
48	SN 2010ay IS A LUMINOUS AND BROAD-LINED TYPE IC SUPERNOVA WITHIN A LOW-METALLICITY HOST GALAXY. Astrophysical Journal, 2012, 756, 184.	4.5	42
49	A SEARCH FOR HIGH PROPER MOTION T DWARFS WITH Pan-STARRS1 + 2MASS + <i>WISE</i> . Astrophysical Journal Letters, 2011, 740, L32.	8.3	40
50	A SEARCH FOR AN OPTICAL COUNTERPART TO THE GRAVITATIONAL-WAVE EVENT GW151226. Astrophysical Journal Letters, 2016, 827, L40.	8.3	38
51	Detecting Earth's temporarily-captured natural satellites—Minimoons. Icarus, 2014, 241, 280-297.	2.5	35
52	A Pan-STARRSÂ1 study of the relationship between wide binarity and planet occurrence in the <i>Kepler</i> field. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4212-4230.	4.4	35
53	CO-driven Activity in Comet C/2017 K2 (PANSTARRS). Astrophysical Journal Letters, 2017, 849, L8.	8.3	35
54	PAndromeda—FIRST RESULTS FROM THE HIGH-CADENCE MONITORING OF M31 WITH Pan-STARRS 1. Astronomical Journal, 2012, 143, 89.	4.7	34

#	Article	IF	CITATIONS
55	The Pan-STARRS1 Proper-motion Survey for Young Brown Dwarfs in Nearby Star-forming Regions. I. Taurus Discoveries and a Reddening-free Classification Method for Ultracool Dwarfs. Astrophysical Journal, 2018, 858, 41.	4.5	34
56	Smooth dark spiral arms in the flocculent galaxy NGC2841. Nature, 1996, 381, 674-676.	27.8	33
57	The Profile of the Galactic Halo from Pan-STARRS1 3ï€ RR Lyrae. Astrophysical Journal, 2018, 859, 31.	4.5	33
58	Detection of Earth-impacting asteroids with the next generation all-sky surveys. Icarus, 2009, 203, 472-485.	2.5	32
59	FOUR NEW T DWARFS IDENTIFIED IN Pan-STARRS 1 COMMISSIONING DATA. Astronomical Journal, 2011, 142, 77.	4.7	32
60	The Pan-STARRS1 Small Area Survey 2. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1825-1839.	4.4	32
61	THE PHOTOMETRIC CLASSIFICATION SERVER FOR Pan-STARRS1. Astrophysical Journal, 2012, 746, 128.	4.5	31
62	Pan-Planets: Searching for hot Jupiters around cool dwarfs. Astronomy and Astrophysics, 2016, 587, A49.	5.1	29
63	A Search for L/T Transition Dwarfs with Pan-STARRS1 and WISE. III. Young L Dwarf Discoveries and Proper Motion Catalogs in Taurus and Scorpius–Centaurus. Astrophysical Journal, 2017, 837, 95.	4.5	27
64	A SEARCH FOR L/T TRANSITION DWARFS WITH Pan-STARRS1 AND <i>WISE</i> : DISCOVERY OF SEVEN NEARBY OBJECTS INCLUDING TWO CANDIDATE SPECTROSCOPIC VARIABLES. Astrophysical Journal, 2013, 777, 84.	4.5	26
65	MULTI-WAVELENGTH OBSERVATIONS OF COMET C/2011 L4 (PAN-STARRS). Astrophysical Journal Letters, 2014, 784, L23.	8.3	26
66	OUTGASSING BEHAVIOR OF C/2012 S1 (ISON) FROM 2011 SEPTEMBER TO 2013 JUNE. Astrophysical Journal Letters, 2013, 776, L20.	8.3	25
67	FRAGMENTATION KINEMATICS IN COMET 332P/IKEYA–MURAKAMI. Astrophysical Journal Letters, 2016, 829, L8.	8.3	25
68	The Splitting of Double-component Active Asteroid P/2016 J1 (PANSTARRS). Astrophysical Journal Letters, 2017, 837, L3.	8.3	24
69	CHARACTERIZATION OF THE PRAESEPE STAR CLUSTER BY PHOTOMETRY AND PROPER MOTIONS WITH 2MASS, PPMXL, AND Pan-STARRS. Astrophysical Journal, 2014, 784, 57.	4.5	22
70	Discovery of a Methane Dwarf from the I[CLC]f[/CLC]A Deep Survey. Astrophysical Journal, 2002, 568, L107-L111.	4.5	21
71	C/2014 UN ₂₇₁ (Bernardinelli-Bernstein): The Nearly Spherical Cow of Comets. Astrophysical Journal Letters, 2021, 921, L37.	8.3	21
72	Precision Distances to Dwarf Galaxies and Globular Clusters from Pan-STARRS1 3Ï€ RR Lyrae. Astrophysical Journal, 2019, 871, 49.	4.5	20

RICHARD WAINSCOAT

#	Article	IF	CITATIONS
73	Progenitor and close-in circumstellar medium of type II supernova 2020fqv from high-cadence photometry and ultra-rapid UV spectroscopy. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2777-2797.	4.4	17
74	Beginning of Activity in Long-period Comet C/2015 ER61 (PANSTARRS). Astronomical Journal, 2017, 153, 206.	4.7	16
75	Establishing Earth's Minimoon Population through Characterization of Asteroid 2020 CD ₃ . Astronomical Journal, 2020, 160, 277.	4.7	16
76	The Pan-STARRS1 Medium-deep Survey: Star Formation Quenching in Group and Cluster Environments. Astrophysical Journal, 2017, 845, 74.	4.5	15
77	Cepheids in M31: The PAndromeda Cepheid Sample. Astronomical Journal, 2018, 156, 130.	4.7	15
78	Photometric Classification of 2315 Pan-STARRS1 Supernovae with Superphot. Astrophysical Journal, 2020, 905, 93.	4.5	15
79	Orphan GRB Afterglow Searches with the Pan-STARRS1 COSMOS Survey. Astrophysical Journal, 2020, 897, 69.	4.5	14
80	Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1. Astronomy and Astrophysics, 2019, 626, A117.	5.1	13
81	PROPERTIES OF M31. III. CANDIDATE BEAT CEPHEIDS FROM PS1 PANDROMEDA DATA AND THEIR IMPLICATION ON METALLICITY GRADIENT. Astrophysical Journal, 2013, 777, 35.	4.5	12
82	Searching for Super-fast Rotators Using the Pan-STARRS 1. Astrophysical Journal, Supplement Series, 2019, 241, 6.	7.7	12
83	THE PAN-STARRS 1 DISCOVERIES OF FIVE NEW NEPTUNE TROJANS. Astronomical Journal, 2016, 152, 147.	4.7	11
84	M DWARF ACTIVITY IN THE PAN-STARRS1 MEDIUM-DEEP SURVEY: FIRST CATALOG AND ROTATION PERIODS. Astrophysical Journal, 2016, 833, 281.	4.5	10
85	A GLOBAL ASTROMETRIC SOLUTION FOR PAN-STARRS REFERENCED TO ICRF2. Astronomical Journal, 2016, 152, 53.	4.7	10
86	Identification of partially resolved binaries in Pan-STARRSÂ1 data. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3499-3515.	4.4	10
87	Orbital stability analysis and photometric characterization of the second Earth Trojan asteroid 2020 XL5. Nature Communications, 2022, 13, 447.	12.8	10
88	Disintegration of active asteroid P/2016 G1 (PANSTARRS). Astronomy and Astrophysics, 2019, 628, A48.	5.1	7
89	The Pan-STARRS search for Near Earth Objects. Proceedings of the International Astronomical Union, 2015, 10, 293-298.	0.0	6
90	Charge Diffusion Variations in Pan-STARRS1 CCDs. Publications of the Astronomical Society of the Pacific, 2018, 130, 065002.	3.1	6

RICHARD WAINSCOAT

#	Article	IF	CITATIONS
91	Asteroid Discovery and Light Curve Extraction Using the Hough Transform: A Rotation Period Study for Subkilometer Main-belt Asteroids. Astronomical Journal, 2020, 159, 25.	4.7	6
92	International Asteroid Warning Network Timing Campaign: 2019 XS. Planetary Science Journal, 2022, 3, 156.	3.6	6
93	Apophis Planetary Defense Campaign. Planetary Science Journal, 2022, 3, 123.	3.6	4
94	The Pan-STARRS search for Near Earth Objects. , 2016, , .		3
95	Regions of slow apparent motion of close approaching asteroids: The case of 2019 OK. Icarus, 2022, 373, 114735.	2.5	3
96	A Color-locus Method for Mapping R _V Using Ensembles of Stars. Astrophysical Journal, 2018, 854, 79.	4.5	2
97	Characterizing the Manx Candidate A/2018 V3. Planetary Science Journal, 2021, 2, 33.	3.6	2
98	Possible Activity in 468861 (2013 LU28). Planetary Science Journal, 2022, 3, 34.	3.6	2
99	Optimizing search strategies for near Earth Objects: Lessons learned from Pan-STARRS1. , 2017, , .		0
100	Characterizing Crosstalk within the Pan-STARRS GPC1 Camera. Publications of the Astronomical Society of the Pacific, 2022, 134, 024501.	3.1	0