Yukihiko Matsumura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3037364/publications.pdf

Version: 2024-02-01

218 papers

5,992 citations

36 h-index 71 g-index

219 all docs

219 docs citations

times ranked

219

4114 citing authors

#	Article	IF	CITATIONS
1	Gasification characteristics of carbon nanotube in supercritical water. Journal of Supercritical Fluids, 2022, 182, 105532.	3.2	O
2	Difference in Gas-Sensing behavior of Multi-walled carbon Nanotube-Paper-Based gas sensor to polar and non-Polar organic solvents. Chemical Physics Letters, 2022, 798, 139596.	2.6	1
3	Slow Pyrolysis of Ulva lactuca (Chlorophyta) for Sustainable Production of Bio-Oil and Biochar. Sustainability, 2022, 14, 3233.	3. 2	6
4	Reutilization of Algal Supercritical Water Gasification Waste for Microalgae <i>Chlorella vulgaris</i> Cultivation. ACS Omega, 2021, 6, 12551-12556.	3.5	8
5	Feasible conditions for Japanese woody biomass utilization. Environmental Science and Pollution Research, 2021, 28, 51060-51071.	5 . 3	4
6	Effect of heating rate on gasification and phosphorus recovery for palm oil mill effluent in supercritical water. Journal of Supercritical Fluids, 2021, 173, 105217.	3.2	4
7	Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products. Renewable Energy, 2021, 173, 934-941.	8.9	16
8	Change in ionization potential of magnesium tin oxide films before and after photochromism. AIP Advances, 2021, 11, 085108.	1.3	0
9	Reaction Rate of Hydrothermal Ammonia Production from Chicken Manure. ACS Omega, 2021, 6, 23442-23446.	3.5	8
10	Recent advancement on hydrogen production from macroalgae via supercritical water gasification. Bioresource Technology Reports, 2021, 16, 100844.	2.7	26
11	Flocculation of Chlorella vulgaris by shell waste-derived bioflocculants for biodiesel production: Process optimization, characterization and kinetic studies. Science of the Total Environment, 2020, 702, 134995.	8.0	58
12	Understanding the mechanism of photochromism in double-layer metal oxide using X-ray photoelectron spectroscopy. Chemical Physics Letters, 2020, 739, 136973.	2.6	1
13	Emission shift by co-doping and color reproducibility improvement by mixing phosphors. Chemical Physics Letters, 2020, 759, 137974.	2.6	1
14	Response of Palladium and Carbon Nanotube Composite Films to Hydrogen Gas and Behavior of Conductive Carriers. Materials, 2020, 13, 4568.	2.9	4
15	Final report on the pilot plant operation for supercritical water gasification of wet biomass. IOP Conference Series: Earth and Environmental Science, 2020, 460, 012019.	0.3	1
16	Supercritical Water Gasification of Guaiacol with Acetic Acid as a Radical Scavenger: Interaction Effect on Char Formation and Gas Composition. ACS Omega, 2020, 5, 24818-24825.	3.5	5
17	Supercritical water gasification of microalgae with and without oil extraction. Journal of Supercritical Fluids, 2020, 165, 104936.	3.2	28
18	Light and flexible gas sensors made of free-standing carbon nanotube paper. Chemical Physics Letters, 2020, 747, 137367.	2.6	7

#	Article	IF	CITATIONS
19	Complete genome sequence of Nitratireductor sp. strain OM-1: A lipid-producing bacterium with potential use in wastewater treatment. Biotechnology Reports (Amsterdam, Netherlands), 2019, 24, e00366.	4.4	3
20	Requirements for photochromism in double-layer metal oxide films. Chemical Physics Letters, 2019, 732, 136620.	2.6	3
21	VHF Plasma CVD Synthesis of Photochromic ZnO Nanoparticle. MRS Advances, 2019, 4, 1573-1577.	0.9	0
22	New Application of Supercritical Water Gasification to Palm Oil Mill Effluent: Gasification and Phosphorus Recovery. Energy & Samp; Fuels, 2019, 33, 11145-11152.	5.1	7
23	Catalytic supercritical water gasification of oil palm frond biomass using nanosized MgO doped Zn catalysts. Journal of Supercritical Fluids, 2019, 154, 104610.	3.2	9
24	Effect of thickness of carbon nanotube films on enhancement of sensor response. Chemical Physics Letters, 2019, 734, 136730.	2.6	5
25	Cell structure destruction and its kinetics during hydrothermal treatment of sewage sludge. Korean Journal of Chemical Engineering, 2019, 36, 433-438.	2.7	6
26	Sewage Sludge Gasification under a Hydrothermal Condition: Phosphorus Behavior and Its Kinetics. Energy & Energ	5.1	8
27	Synthesis of broad yellow phosphors by co-doping and realization of high quality of white light. Chemical Physics Letters, 2019, 717, 11-15.	2.6	3
28	Comparative study between supported and doped MgO catalysts in supercritical water gasification for hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 3690-3701.	7.1	15
29	Determination of retro-aldol reaction type for glyceraldehyde under hydrothermal conditions. Journal of Supercritical Fluids, 2019, 143, 370-377.	3.2	6
30	Development of Palladium and Carbon Nanotubes Composite Hydrogen Gas Sensor. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2019, 2019.10, 20pm3PN208.	0.0	0
31	Effects of physical and chemical adsorption on the electric conductance of carbon nanotube films. AIP Advances, 2018, 8, .	1.3	9
32	Comparative study of hydrothermal pretreatment for rice straw and its corresponding mixture of cellulose, xylan, and lignin. Bioresource Technology, 2018, 255, 1-6.	9.6	40
33	Transient behavior of carbon nanotube thin film for adsorption of polar and non-polar molecules. Chemical Physics Letters, 2018, 691, 351-354.	2.6	3
34	Interaction among Glucose, Xylose, and Guaiacol in Supercritical Water. Energy & Samp; Fuels, 2018, 32, 1788-1795.	5.1	5
35	Effect of Acetic Acid Addition on Decomposition of Xylose in Supercritical Water. Energy & Samp; Fuels, 2018, 32, 1754-1760.	5.1	10
36	Isolation of High Carotenoid-producing <i>Aurantiochytrium</i> sp. Mutants and Improvement of Astaxanthin Productivity Using Metabolic Information. Journal of Oleo Science, 2018, 67, 571-578.	1.4	36

#	Article	IF	Citations
37	Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes. Chemical Physics Letters, 2018, 699, 88-92.	2.6	7
38	Efficient conversion of mannitol derived from brown seaweed to fructose for fermentation with a thraustochytrid. Journal of Bioscience and Bioengineering, 2018, 125, 180-184.	2.2	17
39	Supercritical water gasification of sewage sludge in continuous reactor. Bioresource Technology, 2018, 249, 276-283.	9.6	93
40	Photochromic behavior at the interface of two transparent thin films and the possibility for its use in a high-performance battery. Chemical Physics Letters, 2018, 712, 25-29.	2.6	2
41	RNase H-assisted RNA-primed rolling circle amplification for targeted RNA sequence detection. Scientific Reports, 2018, 8, 7770.	3.3	29
42	Conversion of guaiacol in supercritical water gasification: Detailed effect of feedstock concentration. Journal of Supercritical Fluids, 2018, 142, 32-37.	3.2	12
43	Process Design and Evaluation of Supercritical Water Gasification of Tomato Residue in a Rural Area of Japan. Journal of the Japan Petroleum Institute, 2018, 61, 213-218.	0.6	0
44	Suppression of Radical Char Production in Supercritical Water Gasification by Addition of Organic Acid Radical Scavenger. Energy & Suppression 1.	5.1	12
45	Principles of detection mechanism for adsorbed gases using carbon nanotube nanomat. Chemical Physics Letters, 2018, 709, 77-81.	2.6	8
46	Effect of Single-walled Carbon Nanotube Catalysts on Hydrothermal Pretreatment of Cellulose. Journal of the Japan Petroleum Institute, 2018, 61, 199-204.	0.6	2
47	Decomposition kinetics of uronic acids obtained from kelp under hydrothermal condition. Journal of the Energy Institute, 2017, 90, 185-190.	5.3	3
48	Thermal decomposition products of various carbon sources in chemical vapor deposition synthesis of carbon nanotube. Diamond and Related Materials, 2017, 75, 1-5.	3.9	23
49	Gasification characteristics of histidine and 4-methylimidazole under supercritical water conditions. Biomass Conversion and Biorefinery, 2017, 7, 487-494.	4.6	8
50	Kinetic model of cellulose degradation using simultaneous saccharification and fermentation. Biomass and Bioenergy, 2017, 99, 116-121.	5.7	29
51	In-depth study of continuous production of biodiesel using supercritical 1-butanol. Energy Conversion and Management, 2017, 132, 410-417.	9.2	20
52	Effect of the Heating Rate on the Supercritical Water Gasification of a Glucose/Guaiacol Mixture. Industrial & Engineering Chemistry Research, 2017, 56, 6401-6407.	3.7	20
53	Review on methyl ester production from inedible rubber seed oil under various catalysts. Industrial Crops and Products, 2017, 97, 191-195.	5 . 2	16
54	Effect of preparation conditions in sol-gel method on yellow phosphor with wide spectrum. AIP Advances, 2017, 7, .	1.3	4

#	Article	IF	Citations
55	Improved methanization and microbial diversity during batch mode cultivation with repetition of substrate addition using defined organic matter and marine sediment inoculum at seawater salinity. Bioresource Technology, 2017, 245, 833-840.	9.6	7
56	Real-Time Mass Spectrometric Analysis of Hydrothermal Reaction Products. Industrial & Engineering Chemistry Research, 2017, 56, 9993-9998.	3.7	2
57	State of the art of biodiesel production under supercritical conditions. Progress in Energy and Combustion Science, 2017, 63, 173-203.	31.2	127
58	Continuous production of biodiesel under supercritical methyl acetate conditions: Experimental investigation and kinetic model. Bioresource Technology, 2017, 241, 720-725.	9.6	33
59	Transport phenomena of electrons at the carbon nanotube interface with molecular adsorption. Journal of Applied Physics, 2017, 122, .	2.5	16
60	Quantitative In Situ Mass Spectrometry Analysis of Mannitol Decomposition Products under Hydrothermal Conditions. Energy & Samp; Fuels, 2017, 31, 10866-10873.	5.1	5
61	In situ mass spectrometry of glucose decomposition under hydrothermal reactions. Korean Journal of Chemical Engineering, 2017, 34, 1524-1530.	2.7	3
62	Defects control in the synthesis of low-dimensional zinc oxide. Chemical Physics Letters, 2017, 684, 113-116.	2.6	5
63	Gasification Characteristics of Aminobutyric Acid and Serine as Model Compounds of Proteins under Supercritical Water Conditions. Journal of the Japan Petroleum Institute, 2017, 60, 34-40.	0.6	15
64	<i>In-situ</i> Mass Spectroscopic Analysis of Glucose Decomposition under Hydrothermal Condition: Quantitative Analysis for Reaction Kinetics. Journal of the Japan Petroleum Institute, 2017, 60, 101-109.	0.6	5
65	Simple Equation for Enzymatic Hydrolysis of Cellulose Using Cellulase Complex and \hat{l}^2 -Glucosidase Mixture. Journal of the Japan Petroleum Institute, 2017, 60, 322-328.	0.6	6
66	Effect of Preculture Conditions on Simultaneous Saccharification and Fermentation for Effective Ethanol Production. Journal of the Japan Petroleum Institute, 2016, 59, 93-96.	0.6	0
67	Optimization of Conditions for Hydrothermal Dissolution of Cellulose. Journal of the Japan Petroleum Institute, 2016, 59, 59-64.	0.6	1
68	Kinetics of Sorbitol Decomposition under Hydrothermal Condition. Journal of the Japan Petroleum Institute, 2016, 59, 149-154.	0.6	6
69	Kinetics of Sorbitol Decomposition under Hydrothermal Condition. Journal of the Japan Petroleum Institute, 2016, 59, 241-241.	0.6	0
70	Effect of molecular coverage on the electric conductance of a multi-walled carbon nanotube thin film. Chemical Physics Letters, 2016, 654, 9-12.	2.6	8
71	New insights in biodiesel production using supercritical 1-propanol. Energy Conversion and Management, 2016, 124, 212-218.	9.2	36
72	Supercritical Water Gasification on Three Types of Microalgae in the Presence and Absence of Catalyst and Salt. Procedia Engineering, 2016, 148, 594-599.	1.2	20

#	Article	IF	CITATIONS
73	Detailed Mechanism of Xylose Decomposition in Near-Critical and Supercritical Water. Energy & Samp; Fuels, 2016, 30, 7930-7936.	5.1	14
74	Fossil Diesel Substitution Potential of Biodiesel Produced from Rubber Seed Oil as a Byproduct of Rubber Wood Plantation. Energy & Samp; Fuels, 2016, 30, 8031-8036.	5.1	6
75	Estimation of adsorption energy for water molecules on a multi-walled carbon nanotube thin film by measuring electric resistance. AIP Advances, 2016, 6, 115212.	1.3	14
76	Synthesis of photochromic nanoparticles and determination of the mechanism of photochromism. AIP Advances, 2016, 6, .	1.3	11
77	Isolation and characterization of bacterium producing lipid from short-chain fatty acids. Bioresource Technology, 2016, 201, 215-221.	9.6	6
78	Inhibition of char deposition using a particle bed in heating section of supercritical water gasification. Korean Journal of Chemical Engineering, 2016, 33, 1261-1266.	2.7	5
79	Semi-continuous methane production from undiluted brown algae using a halophilic marine microbial community. Bioresource Technology, 2016, 200, 616-623.	9.6	12
80	Bacterial community structure and predicted alginate metabolic pathway in an alginate-degrading bacterial consortium. Journal of Bioscience and Bioengineering, 2016, 121, 286-292.	2.2	19
81	Characterization of a halotolerant acetoclastic methanogen highly enriched from marine sediment and its application in removal of acetate. Journal of Bioscience and Bioengineering, 2016, 121, 196-202.	2.2	6
82	Decomposition Kinetics of Mannose, Its Sugar Alcohol, and Its Uronic Acid under Hydrothermal Condition. Journal of Chemical Engineering of Japan, 2016, 49, 663-667.	0.6	1
83	High-rate Fermentation of Acetate to Methane under Saline Condition by Aceticlastic Methanogens Immobilized in Marine Sediment. Journal of the Japan Petroleum Institute, 2016, 59, 9-15.	0.6	0
84	Simultaneous Saccharification and Fermentation Using Environmental-adapted Yeast by Preculture. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2016, 95, 303-306.	0.2	1
85	Enhancement of the effective thermal conductivity in packed beds by direct synthesis of carbon nanotubes. Journal of Thermal Science and Technology, 2015, 10, JTST0013-JTST0013.	1.1	2
86	In situ measurement of activation energy for pyrolysis of ethanol as a first reaction in the synthesis of carbon nanotubes. Chemical Physics Letters, 2015, 639, 261-265.	2.6	1
87	Effect of Low-concentration Furfural on Sulfur Amino Acid Biosynthesis in <i>Saccharomyces cerevisiae</i>). Journal of the Japan Petroleum Institute, 2015, 58, 165-168.	0.6	4
88	Determination of Mannitol Decomposition Rate under Hydrothermal Pretreatment Condition. Journal of the Japan Petroleum Institute, 2015, 58, 252-255.	0.6	4
89	Effectiveness of Spiral Reactor for Biodiesel Production Using Supercritical <i>t</i> -Butyl Methyl Ether (MTBE). Journal of the Japan Petroleum Institute, 2015, 58, 110-117.	0.6	12
90	Effect of Pressure on Biodiesel Production in Supercritical <i>Tert</i> -butyl Methyl Ether (MTBE). Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2015, 94, 755-762.	0.2	6

#	Article	IF	CITATIONS
91	A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions. Bioresource Technology, 2015, 191, 306-311.	9.6	65
92	A study on torrefaction of Laminaria japonica. Fuel Processing Technology, 2015, 138, 133-138.	7.2	42
93	Effect of Salinity on Methanogenic Propionate Degradation by Acclimated Marine Sediment-Derived Culture. Applied Biochemistry and Biotechnology, 2015, 177, 1541-1552.	2.9	5
94	Hydrothermal Gasification of Biomass. , 2015, , 251-267.		15
95	A novel spiral reactor for biodiesel production in supercritical ethanol. Applied Energy, 2015, 147, 20-29.	10.1	50
96	Energy analysis for the production of biodiesel in a spiral reactor using supercritical tert-butyl methyl ether (MTBE). Bioresource Technology, 2015, 196, 65-71.	9.6	19
97	Decomposition of Xylose in Sub- and Supercritical Water. Industrial & Engineering Chemistry Research, 2015, 54, 7604-7613.	3.7	36
98	Molecular dynamic simulation for the evaluation of free energy distribution along the reaction coordinates at the initial stage of carbon nanotube nucleation. Chemical Physics Letters, 2015, 634, 194-197.	2.6	3
99	Improved methane production from brown algae under high salinity by fed-batch acclimation. Bioresource Technology, 2015, 187, 275-281.	9.6	27
100	Trial for simple gas sensor composed of as-grown carbon nanotubes. Chemical Physics Letters, 2015, 628, 81-84.	2.6	10
101	Artificial Neural Network Modeling to Predict Biodiesel Production in Supercritical Methanol and Ethanol Using Spiral Reactor. Procedia Environmental Sciences, 2015, 28, 214-223.	1.4	43
102	Biodiesel Production in Supercritical Methanol Using a Novel Spiral Reactor. Procedia Environmental Sciences, 2015, 28, 204-213.	1.4	23
103	Dysgonomonas alginatilytica sp. nov., an alginate-degrading bacterium isolated from a microbial consortium. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3570-3575.	1.7	22
104	The Present Status and Future Scope of Bioenergy in Japan. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2015, 94, 1079-1086.	0.2	5
105	Gasification Characteristics of Alanine in Supercritical Water. Journal of the Japan Petroleum Institute, 2014, 57, 225-229.	0.6	12
106	Rules of Thumb (Empirical Rules) for the Biomass Utilization by Thermochemical Conversion. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2014, 93, 684-702.	0.2	7
107	Process Evaluation for Torrefaction of Empty Fruit Bunch in Malaysia. Journal of the Japan Petroleum Institute, 2014, 57, 88-93.	0.6	6
108	Behavior of Organics in Kelp during Hydrothermal Pretreatment: Fundamental Characteristics and Effect of Salt. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2014, 93, 531-535.	0.2	5

#	Article	IF	Citations
109	Gasification Characteristics of Amino Acids in Supercritical Water. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2014, 93, 936-943.	0.2	12
110	Editorial: Biofuels. Energy Conversion and Management, 2014, 88, 1077.	9.2	1
111	Production of Chemicals in Supercritical Water. Biofuels and Biorefineries, 2014, , 427-443.	0.5	O
112	Precursor and formation mechanism in the synthesis of carbon nanotubes by chemical vapor deposition. Chemical Physics Letters, 2014, 616-617, 217-221.	2.6	3
113	Simulation of catalyst behavior during chemical vapor deposition processing of carbon nanotubes. Chemical Physics Letters, 2014, 604, 1-4.	2.6	2
114	Value-added lipid production from brown seaweed biomass by two-stage fermentation using acetic acid bacterium and thraustochytrid. Applied Microbiology and Biotechnology, 2014, 98, 9207-9216.	3.6	18
115	New approach of catalyst-free biodiesel production from canola oil in supercritical tert-butyl methyl ether (MTBE). Fuel, 2014, 135, 172-181.	6.4	38
116	Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity. Bioresource Technology, 2014, 169, 362-366.	9.6	47
117	Kinetics analysis of phenol and benzene decomposition in supercritical water. Journal of Supercritical Fluids, 2014, 87, 73-82.	3.2	36
118	Comparative Study of Hydrothermal Pretreatment of Eucalyptus and Oil Palm Empty Fruit Bunch for Ethanol Fermentation. Journal of the Japan Petroleum Institute, 2014, 57, 164-170.	0.6	2
119	Effect of CH ₃ COOH and K ₂ CO ₃ on Hydrothermal Pretreatment of Water Hyacinth (<i>Eichhornia crassipes</i>). Industrial & Engineering Chemistry Research, 2013, 52, 5009-5015.	3.7	12
120	Kinetic Analysis of Guaiacol Conversion in Sub- and Supercritical Water. Industrial & Engineering Chemistry Research, 2013, 52, 9048-9059.	3.7	70
121	Kinetic Analysis of Lignin Hydrothermal Conversion in Sub- and Supercritical Water. Industrial & Description of Engineering Chemistry Research, 2013, 52, 5626-5639.	3.7	111
122	Gasification Rate of Various Biomass Feedstocks in Supercritical Water. Journal of the Japan Petroleum Institute, 2013, 56, 1-10.	0.6	33
123	Reaction Pathways of Phenol and Benzene Decomposition in Supercritical Water Gasification. Journal of the Japan Petroleum Institute, 2013, 56, 331-343.	0.6	29
124	Effect of Inhibition Substances on Monod Equation of Yeast Growth. Journal of the Japan Petroleum Institute, 2013, 56, 326-330.	0.6	6
125	Simultaneous Hydrothermal Pretreatment and Ball Milling of Bamboo. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2013, 92, 889-893.	0.2	0
126	The Effect of Catalyst Content on Supercritical Water Gasification Process with Shochu (Japanese) Tj ETQq0 0 0 Gakkaishi/Journal of the Japan Institute of Energy, 2013, 92, 1159-1166.	rgBT /Ove 0.2	rlock 10 Tf 50 3

Gakkaishi/Journal of the Japan Institute of Energy, 2013, 92, 1159-1166.

#	Article	IF	Citations
127	Effect of Activated Carbon Catalytic on Supercritical Water Gasification of Glycine as a Model Compound of Protein. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2013, 92, 894-899.	0.2	15
128	Heat Transfer Characteristics of Activated Carbon Suspended Slurry Near the Critical Point of Water. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2013, 92, 309-312.	0.2	0
129	Catalytic Gasification of Poultry Manure and Eucalyptus Wood Mixture in Supercritical Water. Industrial & Engineering Chemistry Research, 2012, 51, 5685-5690.	3.7	33
130	Reaction Kinetics of the Lignin Conversion in Supercritical Water. Industrial & Engineering Chemistry Research, 2012, 51, 11975-11988.	3.7	119
131	Dehydration of Biodiesel Fuel Using Desiccant. Journal of the Japan Petroleum Institute, 2012, 55, 358-362.	0.6	1
132	Applicability of Monod Equation to Growth Curves of Various Microorganisms. Journal of the Japan Petroleum Institute, 2012, 55, 236-240.	0.6	6
133	Determination of coal ash emissivity using simplified equation for thermal design of coal-fired boilers. Fuel, 2012, 95, 241-246.	6.4	14
134	Effects of fine ash particles and alkali metals on ash deposition characteristics at the initial stage of ash deposition determined in 1.5MWth pilot plant tests. Fuel, 2012, 97, 233-240.	6.4	32
135	Drastic enhancement of effective thermal conductivity of a metal hydride packed bed by direct synthesis of single-walled carbon nanotubes. International Journal of Hydrogen Energy, 2012, 37, 1836-1841.	7.1	33
136	In situ mass spectroscopic analysis for chemical vapor deposition synthesis of single-walled carbon nanotubes. Chemical Physics Letters, 2012, 533, 56-59.	2.6	6
137	In situ mass spectroscopic analysis of alcohol catalytic chemical vapor deposition process for single-walled carbon nanotube. Chemical Physics Letters, 2012, 536, 104-108.	2.6	12
138	l-Menthol crystal micronized by rapid expansion of supercritical carbon dioxide. Journal of Industrial and Engineering Chemistry, 2012, 18, 904-908.	5.8	9
139	Feasibility of Bioenergy Utilization for Sustainable Agriculture: A Case Study on Biomethanation and Ethanol Production in Thailand. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2012, 91, 923-930.	0.2	1
140	Temperature Effect on Hydrothermal Decomposition of Glucose in Sub- And Supercritical Water. Industrial & Supercritical Water. 1011, 50, 8492-8497.	3.7	128
141	New Correlation for Mass Transfer Characteristics of Spray Column. Industrial & Engineering Chemistry Research, 2011, 50, 13554-13560.	3.7	10
142	Reaction Characteristics of Glycerol Pretreatment of Bio-oil with Calcium Hydroxide for Biodiesel Production. Journal of the Japan Petroleum Institute, 2011, 54, 266-271.	0.6	2
143	Elucidation of Thermal Pretreatment Kinetics of Bio-oil Feedstock Premixed with Calcium Hydroxide and Glycerol for Reactive Biodiesel Production via Ethanolysis in Developing Countries. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2011, 90, 172-176.	0.2	3
144	Acid-Catalyzed Char Formation from 5-HMF in Subcritical Water. Journal of Chemical Engineering of Japan, 2011, 44, 431-436.	0.6	19

9

#	Article	IF	Citations
145	MD Study of Functionalized Single-Walled Carbon Nanotube. Journal of Thermal Science and Technology, 2011, 6, 256-267.	1.1	0
146	Role of 5-HMF in Supercritical Water Gasification of Glucose. Journal of Chemical Engineering of Japan, 2011, 44, 91-97.	0.6	22
147	Proposal for Bioethanol Fermentation System with N, P, K Recycling by Wet Oxidation. Journal of the Japan Petroleum Institute, 2011, 54, 45-49.	0.6	3
148	Heat Transfer Characteristics of Biomass Slurry under High Pressure and High Temperature. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2011, 90, 874-880.	0.2	5
149	G224 Correlation for the mass transfer in the spray column. The Proceedings of the Thermal Engineering Conference, 2011, 2011, 359-360.	0.0	0
150	Energy Balance of a Staged Process for the Supercritical Water Gasification of a Hydrogen Fermentation Residue of Food Waste. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2011, 90, 455-460.	0.2	2
151	The Rheological Characteristics of Biomass Slurry under High Pressure and High Temperature. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2011, 90, 1165-1170.	0.2	0
152	Metal coating effect on thermal diffusivity of single-walled carbon nanotube. Chemical Physics Letters, 2010, 495, 80-83.	2.6	6
153	Supercritical Water Gasification Staged at Intervals for Hydrogen Fermentation Residue of Food Waste. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2010, 89, 1173-1178.	0.2	5
154	Effect of Temperature on Tarry Material Production of Glucose in Supercritical Water Gasification. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2010, 89, 1179-1184.	0.2	28
155	New Approaches to Biodiesel Production by Ethanolysis with Calcium Hydroxide Catalyst Using Thermal Pretreatment with Glycerol. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2010, 89, 562-566.	0.2	9
156	Prospective growth region for chemical vapor deposition synthesis of carbon nanotube on C–H–O ternary diagram. Diamond and Related Materials, 2010, 19, 1401-1404.	3.9	28
157	Char Formation Mechanism in Supercritical Water Gasification Process: A Study of Model Compounds. Industrial & Engineering Chemistry Research, 2010, 49, 4055-4062.	3.7	129
158	Heterogeneously Catalyzed Ethanolysis of Groundnut Crude Oil Using Activated Calcium Oxide and Surface-Modified Activated Calcium Oxide. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2010, 89, 53-58.	0.2	10
159	MNM-4A-3 Direct synthesis method of single-walled carbon nanotube containing platinum group element. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2010, 2010.2, 175-176.	0.0	0
160	Recovery of activated carbon catalyst, calcium, nitrogen and phosphate from effluent following supercritical water gasification of poultry manure. Bioresource Technology, 2009, 100, 4884-4886.	9.6	38
161	Influence of catalyst supporters on catalyst nanoparticles in synthesis of single-walled carbon nanotubes. Microelectronics Journal, 2009, 40, 692-696.	2.0	6
162	Influence of metal coating on single-walled carbon nanotube: Molecular dynamics approach to determine tensile strength. Chemical Physics Letters, 2009, 469, 125-129.	2.6	40

#	Article	IF	CITATIONS
163	Reactor Development for Supercritical Water Gasification of 4.9 wt% Glucose Solution at 673 K by Using Computational Fluid Dynamics. Industrial & Engineering Chemistry Research, 2009, 48, 8381-8386.	3.7	27
164	Hydrothermal Pretreatment of Rubber Wood for the Saccharification Process. Industrial & Engineering Chemistry Research, 2009, 48, 4587-4591.	3.7	42
165	Formation of Tarry Material from 5-HMF in Subcritical and Supercritical Water. Industrial & Engineering Chemistry Research, 2009, 48, 9837-9846.	3.7	163
166	Molecular dynamics simulation of metal coating on single-walled carbon nanotube. Chemical Physics Letters, 2008, 464, 160-165.	2.6	32
167	Molecular dynamics simulation of physical vapor deposition of metals onto a vertically aligned single-walled carbon nanotube surface. Carbon, 2008, 46, 2046-2052.	10.3	19
168	Behavior of 5-HMF in Subcritical and Supercritical Water. Industrial & Engineering Chemistry Research, 2008, 47, 2956-2962.	3.7	64
169	Effect of catalyst combination on growth of single-walled carbon nanotubes. Diamond and Related Materials, 2008, 17, 1888-1890.	3.9	4
170	Gasification of Catalyst-Suspended Chicken Manure in Supercritical Water. Journal of Chemical Engineering of Japan, 2008, 41, 433-440.	0.6	55
171	Behavior of Inorganic Elements in Poultry Manure during Supercritical Water Gasification. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2008, 87, 731-736.	0.2	49
172	Detailed Analysis of Heat and Mass Balance for Supercritical Water Gasification. Journal of Chemical Engineering of Japan, 2008, 41, 817-828.	0.6	24
173	Glucose Decomposition in Water under Supercritical Pressure at 448-498 K. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2007, 86, 700-706.	0.2	20
174	A kinetic study of in situ CO2 removal gasification of woody biomass for hydrogen production. Biomass and Bioenergy, 2007, 31, 556-562.	5.7	20
175	Improvement of the Bioethanol Process Using Cassava Pulp as Biomass Resource. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2007, 86, 470-474.	0.2	2
176	Improvement of Bioethanol Process-Design and Evaluation of Pretreatment Step and Whole Process-Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2007, 86, 462-469.	0.2	3
177	EFFECT OF HEATING RATE OF BIOMASS FEEDSTOCK ON CARBON GASIFICATION EFFICIENCY IN SUPERCRITICAL WATER GASIFICATION. Chemical Engineering Communications, 2006, 193, 649-659.	2.6	47
178	SUPERCRITICAL WATER TREATMENT OF BIOMASS FOR ENERGY AND MATERIAL RECOVERY. Combustion Science and Technology, 2006, 178, 509-536.	2.3	138
179	Glucose Decomposition Kinetics in Water at 25 MPa in the Temperature Range of 448â^673 K. Industrial & Lamp; Engineering Chemistry Research, 2006, 45, 1875-1879.	3.7	102
180	A Kinetic Study of the Decomposition of CaCO3 at High CO2 Partial Pressure for the Regeneration of a CO2 Sorbent. Journal of Chemical Engineering of Japan, 2006, 39, 1191-1194.	0.6	7

#	Article	IF	Citations
181	Hydrogenation of Acetone in Supercritical Water Using Formic Acid: Rapid Hydrogenation Observed at a Long Retention Time. Journal of Chemical Engineering of Japan, 2006, 39, 1300-1302.	0.6	5
182	Current situation and prospect of biomass utilization in Japan. Biomass and Bioenergy, 2005, 29, 304-309.	5.7	18
183	The scale of biomass production in Japan. Biomass and Bioenergy, 2005, 29, 321-330.	5.7	12
184	Amount, availability, and potential use of rice straw (agricultural residue) biomass as an energy resource in Japan. Biomass and Bioenergy, 2005, 29, 347-354.	5.7	131
185	Woody biomass resources and conversion in Japan: The current situation and projections to 2010 and 2050. Biomass and Bioenergy, 2005, 29, 336-346.	5.7	69
186	Evaluation of supply potential of energy crops in Japan considering cases of improvement of crop productivity. Biomass and Bioenergy, 2005, 29, 355-359.	5.7	11
187	Biomass gasification in near- and super-critical water: Status and prospects. Biomass and Bioenergy, 2005, 29, 269-292.	5 . 7	648
188	Hydrothermal Treatment of Cellulose as a Pretreatment for Ethanol Fermentation: Cellulose Hydrolysis Experiments. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2005, 84, 544-548.	0.2	16
189	Improvement of the Refinement Process for Bioethanol. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2005, 84, 852-860.	0.2	10
190	Gasification of Stockbreeding Waste in Supercritical Water. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2004, 83, 740-744.	0.2	3
191	Hydrothermal Reaction of Glucose and Glycine as Model Compounds of Biomass. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2004, 83, 794-798.	0.2	26
192	Gasification of biomass model compounds and real biomass in supercritical water. Biomass and Bioenergy, 2004, 26, 71-78.	5.7	292
193	Fundamental design of a continuous biomass gasification process using a supercritical water fluidized bed. International Journal of Hydrogen Energy, 2004, 29, 701-707.	7.1	181
194	Comprehensive comparison of efficiency and CO2 emissions between biomass energy conversion technologiesâ€"position of supercritical water gasification in biomass technologies. Biomass and Bioenergy, 2003, 25, 257-272.	5.7	139
195	Reaction Engineering Model for Supercritical Water Oxidation of Phenol Catalyzed by Activated Carbon. Industrial & Damp; Engineering Chemistry Research, 2003, 42, 3522-3531.	3.7	20
196	Effect of Carbonaceous Materials on the Oxidation of Phenol in Supercritical Water:Â A Preliminary Study. Industrial & Engineering Chemistry Research, 2003, 42, 3718-3720.	3.7	13
197	Biomass Gasification in Supercritical Water with Partial Oxidation. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2003, 82, 919-925.	0.2	23
198	Hydrothermal Pulping of Wet Biomass as Pretreatment for Supercritical Water Gasiificalion Studied Using Cabbage as a Model Compound Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2003, 82, 97-102.	0.2	27

#	Article	IF	CITATIONS
199	Electrochemical Oxidation of Glucose on a Platinum Electrode at 523 K Kagaku Kogaku Ronbunshu, 2003, 29, 188-190.	0.3	1
200	Electrochemical Oxidation of Methanol in Hot Aqueous Solution Kagaku Kogaku Ronbunshu, 2003, 29, 184-187.	0.3	0
201	Effects of a Sodium Hydroxide Addition on the Decomposition of 2-Chlorophenol in Supercritical Water. Industrial & Samp; Engineering Chemistry Research, 2002, 41, 5427-5431.	3.7	15
202	Determination of Ammonia Oxidation Rate in Sub- and Supercritical Water. Industrial & Engineering Chemistry Research, 2002, 41, 6020-6027.	3.7	86
203	Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan. Energy Conversion and Management, 2002, 43, 1301-1310.	9.2	92
204	Carbon catalyzed supercritical water oxidation of phenol. Journal of Supercritical Fluids, 2002, 22, 149-156.	3.2	34
205	Global Kinetics of 2-Chlorophenol Disappearance with NaOH in Supercritical Water Journal of Chemical Engineering of Japan, 2002, 35, 1252-1256.	0.6	6
206	Adsorption of Carbon Monoxide on Platinum in Hot Aqueous Acidic Solution from 423 to 533 K Journal of Chemical Engineering of Japan, 2002, 35, 626-633.	0.6	2
207	Electrochemical Oxidation of Carbon Monoxide on a Pt Electrode at Lower Potential in Hot Aqueous Solution at 423 K and 473 K Journal of Chemical Engineering of Japan, 2002, 35, 479-484.	0.6	1
208	Gasification of Cellulose, Xylan, and Lignin Mixtures in Supercritical Water. Industrial & Samp; Engineering Chemistry Research, 2001, 40, 5469-5474.	3.7	197
209	Supercritical Water Liquefaction of Coal and Waste Tires: Effects of Partial Oxidation and the Water-gas Shift Reaction Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 2001, 44, 397-400.	0.1	4
210	A Case Study of Ethanol Production from Sweet Sorghum in China Sekiyu Gakkaishi (Journal of the) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
211	Supercritical water oxidation of high concentrations of phenol. Journal of Hazardous Materials, 2000, 73, 245-254.	12.4	39
212	Improvement of Heat Transfer in a Packed-Bed Reactor for a Chemical Heat Pump Using Sodium Carbonate Decahydrate Dehydration. Industrial & Engineering Chemistry Research, 1997, 36, 2421-2426.	3.7	2
213	Carbon-Catalyzed Gasification of Organic Feedstocks in Supercritical Waterâ€. Industrial & Engineering Chemistry Research, 1996, 35, 2522-2530.	3.7	373
214	Bubble Characteristics of Circulating Three-Phase Fluidized Bed Kagaku Kogaku Ronbunshu, 1995, 21, 132-136.	0.3	0
215	Heat pump characteristics of sodium carbonate dehydration/hydration system. International Journal of Energy Research, 1995, 19, 253-261.	4.5	4
216	A chemical heat pump using hydration of mgo particles in a three-phase reactor. International Journal of Energy Research, 1995, 19, 263-273.	4.5	8

#	Article	lF	CITATIONS
217	Fundamental Investigation of a Chemical Heat Pump with Cold Heat Storage Using Sodium Carbonate Decahydrate and Oxalic Acid Dihydrate Kagaku Kogaku Ronbunshu, 1993, 19, 695-698.	0.3	3
218	Effect of Column Height on Mass Transfer Characteristics of Spray Column. Applied Mechanics and Materials, 0, 625, 657-660.	0.2	0