Marc Cruts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3036359/publications.pdf

Version: 2024-02-01

14655 14208 17,421 142 66 128 citations h-index g-index papers 155 155 155 15239 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Clinical variability and onset age modifiers in an extended Belgian GRN founder family. Neurobiology of Aging, 2018, 67, 84-94.	3.1	17
2	Extended FTLD pedigree segregating a Belgian GRN-null mutation: neuropathological heterogeneity in one family. Alzheimer's Research and Therapy, 2018, 10, 7.	6.2	10
3	Rare nonsynonymous variants in SORT1 are associated with increased risk for frontotemporal dementia. Neurobiology of Aging, 2018, 66, 181.e3-181.e10.	3.1	19
4	The Genetics of <i>C9orf72 </i> Expansions. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a026757.	6.2	19
5	Common and rare TBK1 variants in early-onset Alzheimer disease in a European cohort. Neurobiology of Aging, 2018, 62, 245.e1-245.e7.	3.1	16
6	Data Mining: Applying the AD&FTD Mutation Database to Progranulin. Methods in Molecular Biology, 2018, 1806, 81-92.	0.9	6
7	Clinical Evidence of Disease Anticipation in Families Segregating a <i>C9orf72</i> Repeat Expansion. JAMA Neurology, 2017, 74, 445.	9.0	56
8	Frontotemporal dementia., 2017,, 199-249.		1
9	Familial primary lateral sclerosis or dementia associated with Arg573Gly <i>TBK1</i> mutation. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 996-997.	1.9	23
10	Relationship between C9orf72 repeat size and clinical phenotype. Current Opinion in Genetics and Development, 2017, 44, 117-124.	3.3	114
11	<i>TBK1</i> Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Human Mutation, 2017, 38, 297-309.	2.5	87
12	Modifiers of GRN -Associated Frontotemporal Lobar Degeneration. Trends in Molecular Medicine, 2017, 23, 962-979.	6.7	26
13	Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Scientific Reports, 2016, 6, 20877.	3.3	239
14	Clinical features of <i>TBK1 </i> carriers compared with <i>C9orf72 </i> , <i>GRN </i> and non-mutation carriers in a Belgian cohort. Brain, 2016, 139, 452-467.	7.6	86
15	Reduced secretion and altered proteolytic processing caused by missense mutations in progranulin. Neurobiology of Aging, 2016, 39, 220.e17-220.e26.	3.1	11
16	O3-13-03: Massive parallel gene panel sequencingÂin a belgian ftld cohort of causal genes associated with diverse neurodegenerative brain diseases. , 2015, 11, P251-P251.		0
17	Investigating the role of filamin C in Belgian patients with frontotemporal dementia linked to GRN deficiency in FTLD-TDP brains. Acta Neuropathologica Communications, 2015, 3, 68.	5.2	13
18	Reduced secreted clusterin as a mechanism for Alzheimer-associated CLU mutations. Molecular Neurodegeneration, 2015, 10, 30.	10.8	46

#	Article	IF	CITATIONS
19	Loss of <i>TBK1</i> is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology, 2015, 85, 2116-2125.	1.1	151
20	Global investigation and meta-analysis of the <i>C9orf72</i> (G ₄ C ₂) _n repeat in Parkinson disease. Neurology, 2014, 83, 1906-1913.	1.1	56
21	TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathologica, 2014, 127, 407-418.	7.7	123
22	Investigating the role of rare heterozygous TREM2 variants in Alzheimer's disease and frontotemporal dementia. Neurobiology of Aging, 2014, 35, 726.e11-726.e19.	3.1	158
23	Sequencing an Ashkenazi reference panel supports population-targeted personal genomics and illuminates Jewish and European origins. Nature Communications, 2014, 5, 4835.	12.8	156
24	Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration. Acta Neuropathologica, 2014, 128, 397-410.	7.7	93
25	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	10.2	302
26	Promoter DNA methylation regulates progranulin expression and is altered in FTLD. Acta Neuropathologica Communications, 2013, 1, 16.	5.2	43
27	Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathologica, 2013, 126, 881-893.	7.7	427
28	A Panâ€ <scp>E</scp> uropean Study of the <i>C9orf72</i> Repeat Associated with <scp>FTLD</scp> : Geographic Prevalence, Genomic Instability, and Intermediate Repeats. Human Mutation, 2013, 34, 363-373.	2.5	247
29	The <i>C9orf72</i> GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS. Science, 2013, 339, 1335-1338.	12.6	1,095
30	Explorative genetic study of UBQLN2 and PFN1 in an extended Flanders-Belgian cohort of frontotemporal lobar degeneration patients. Neurobiology of Aging, 2013, 34, 1711.e1-1711.e5.	3.1	36
31	C9orf72 G4C2 repeat expansions in Alzheimer's disease and mild cognitive impairment. Neurobiology of Aging, 2013, 34, 1712.e1-1712.e7.	3.1	65
32	hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathologica, 2013, 125, 413-423.	7.7	302
33	Loss of ALS-associated TDP-43 in zebrafish causes muscle degeneration, vascular dysfunction, and reduced motor neuron axon outgrowth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4986-4991.	7.1	126
34	Distinct Clinical Characteristics of C9orf72 Expansion Carriers Compared With GRN, MAPT, and Nonmutation Carriers in a Flanders-Belgian FTLD Cohort. JAMA Neurology, 2013, 70, 365.	9.0	85
35	Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum. Trends in Neurosciences, 2013, 36, 450-459.	8.6	151
36	The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathologica, 2012, 124, 353-372.	7.7	242

#	Article	IF	CITATIONS
37	Ataxin-2 polyQ expansions in FTLD-ALS spectrum disorders in Flanders-Belgian cohorts. Neurobiology of Aging, 2012, 33, 1004.e17-1004.e20.	3.1	32
38	Genetic association of CR1 with Alzheimer's disease: A tentative disease mechanism. Neurobiology of Aging, 2012, 33, 2949.e5-2949.e12.	3.1	72
39	A Major Genetic Factor at Chromosome 9p Implicated in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). , 2012, , .		2
40	Locusâ€specific mutation databases for neurodegenerative brain diseases. Human Mutation, 2012, 33, 1340-1344.	2.5	414
41	Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Molecular Psychiatry, 2012, 17, 223-233.	7.9	179
42	A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurology, The, 2012, 11, 54-65.	10.2	565
43	Call for participation in the neurogenetics consortium within the Human Variome Project. Neurogenetics, 2011, 12, 169-173.	1.4	5
44	TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort. Brain, 2011, 134, 808-815.	7.6	110
45	Genetic and Clinical Features of Progranulin-Associated Frontotemporal Lobar Degeneration. Archives of Neurology, 2011, 68, 488.	4.5	108
46	Rescue of Progranulin Deficiency Associated with Frontotemporal Lobar Degeneration by Alkalizing Reagents and Inhibition of Vacuolar ATPase. Journal of Neuroscience, 2011, 31, 1885-1894.	3.6	121
47	The pursuit of susceptibility genes for Alzheimer's disease: progress and prospects. Trends in Genetics, 2010, 26, 84-93.	6.7	122
48	Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Human Mutation, 2010, 31, 763-780.	2.5	428
49	Contribution of TARDBP to Alzheimer's Disease Genetic Etiology. Journal of Alzheimer's Disease, 2010, 21, 423-430.	2.6	19
50	Molecular Pathways of Frontotemporal Lobar Degeneration. Annual Review of Neuroscience, 2010, 33, 71-88.	10.7	39
51	Identification of 2 Loci at Chromosomes 9 and 14 in a Multiplex Family With Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Archives of Neurology, 2010, 67, 606-16.	4.5	47
52	Novel PSEN1 Mutation in a Bulgarian Patient With Very Early-Onset Alzheimer's Disease, Spastic Paraparesis, and Extrapyramidal Signs. American Journal of Alzheimer's Disease and Other Dementias, 2009, 24, 404-407.	1.9	18
53	Serum biomarker for progranulinâ€associated frontotemporal lobar degeneration. Annals of Neurology, 2009, 65, 603-609.	5.3	195
54	Neuronal inclusion protein TDP-43 has no primary genetic role in FTD and ALS. Neurobiology of Aging, 2009, 30, 1329-1331.	3.1	67

#	Article	IF	Citations
55	Progranulin locus deletion in frontotemporal dementia. Human Mutation, 2008, 29, 53-58.	2.5	85
56	Granulin mutations associated with frontotemporal lobar degeneration and related disorders: An update. Human Mutation, 2008, 29, 1373-1386.	2.5	126
57	Loss of progranulin function in frontotemporal lobar degeneration. Trends in Genetics, 2008, 24, 186-194.	6.7	110
58	Molecular Pathogenesis of Frontotemporal Lobar Degeneration. Archives of Neurology, 2008, 65, 700-4.	4.5	2
59	Islands of euchromatin-like sequence and expressed polymorphic sequences within the short arm of human chromosome 21. Genome Research, 2007, 17, 1690-1696.	5.5	25
60	Frontotemporal Lobar Degeneration with Ubiquitin-Positive Inclusions: A Molecular Genetic Update. Neurodegenerative Diseases, 2007, 4, 227-235.	1.4	21
61	Alzheimer and Parkinson Diagnoses in Progranulin Null Mutation Carriers in an Extended Founder Family. Archives of Neurology, 2007, 64, 1436.	4.5	143
62	Cholesterol and Triglycerides Moderate the Effect of Apolipoprotein E on Memory Functioning in Older Adults. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2007, 62, P112-P118.	3.9	57
63	Increased risk of dementia following mild head injury for carriers but not for non-carriers of the APOE $\hat{l}\mu4$ allele. International Psychogeriatrics, 2007, 19, 159.	1.0	57
64	Fatigue before and after mild traumatic brain injury: Pre–post-injury comparisons in relation to <i>Apolipoprotein</i> E. Brain Injury, 2007, 21, 1049-1054.	1.2	47
65	Progranulin null mutations in both sporadic and familial frontotemporal dementia. Human Mutation, 2007, 28, 846-855.	2.5	162
66	Mutations other than null mutations producing a pathogenic loss of progranulin in frontotemporal dementia. Human Mutation, 2007, 28, 416-416.	2.5	116
67	The influence of apoe status on episodic and semantic memory: Data from a population-based study Neuropsychology, 2006, 20, 645-657.	1.3	112
68	APP duplication is sufficient to cause early onset Alzheimer's dementia with cerebral amyloid angiopathy. Brain, 2006, 129, 2977-2983.	7.6	337
69	Reduced hippocampal volume in non-demented carriers of the apolipoprotein E É>4: Relation to chronological age and recognition memory. Neuroscience Letters, 2006, 396, 23-27.	2.1	112
70	Dose dependent effect of APOE É 4 on behavioral symptoms in frontal lobe dementia. Neurobiology of Aging, 2006, 27, 285-292.	3.1	64
71	Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature, 2006, 442, 920-924.	27.8	1,386
72	Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased A \hat{l}^2 42 and decreased A \hat{l}^2 40. Human Mutation, 2006, 27, 686-695.	2.5	306

#	Article	IF	Citations
73	Visualization of MAPT inversion on stretched chromosomes of tau-negative frontotemporal dementia patients. Human Mutation, 2006, 27, 1057-1059.	2.5	14
74	Alzheimer dementia caused by a novel mutation located in the APP C-terminal intracytosolic fragment. Human Mutation, 2006, 27, 888-896.	2.5	62
75	Characterization of Ubiquitinated Intraneuronal Inclusions in a Novel Belgian Frontotemporal Lobar Degeneration Family. Journal of Neuropathology and Experimental Neurology, 2006, 65, 289-301.	1.7	45
76	A Belgian ancestral haplotype harbours a highly prevalent mutation for 17q21-linked tau-negative FTLD. Brain, 2006, 129, 841-852.	7.6	88
77	Reduced functional brain activity response in cognitively intact apolipoprotein E $\hat{l}\mu4$ carriers. Brain, 2006, 129, 1240-1248.	7.6	133
78	Progranulin Mutations in Ubiquitin-Positive Frontotemporal Dementia Linked to Chromosome 17q21. Current Alzheimer Research, 2006, 3, 485-491.	1.4	60
79	Tau is central in the genetic Alzheimer–frontotemporal dementia spectrum. Trends in Genetics, 2005, 21, 664-672.	6.7	55
80	Chromosome 17-linked Frontotemporal dementia with Ubiquitin-Positive, Tau-Negative Inclusions. Research and Perspectives in Alzheimer's Disease, 2005, , 117-137.	0.1	0
81	novoSNP, a novel computational tool for sequence variation discovery. Genome Research, 2005, 15, 436-442.	5.5	254
82	Genomic architecture of human 17q21 linked to frontotemporal dementia uncovers a highly homologous family of low-copy repeats in the tau region. Human Molecular Genetics, 2005, 14, 1753-1762.	2.9	82
83	High-density SNP haplotyping suggests altered regulation of tau gene expression in progressive supranuclear palsy. Human Molecular Genetics, 2005, 14, 3281-3292.	2.9	156
84	Linkage and Association Studies Identify a Novel Locus for Alzheimer Disease at 7q36 in a Dutch Population-Based Sample. American Journal of Human Genetics, 2005, 77, 643-652.	6.2	48
85	Familial clustering and genetic risk for dementia in a genetically isolated Dutch population. Brain, 2004, 127, 1641-1649.	7.6	60
86	Genetic Testing Has No Place as a Routine Diagnostic Test in Sporadic and Familial Cases of Alzheimer's Disease. Journal of the American Geriatrics Society, 2004, 52, 2110-2113.	2.6	16
87	A novel presenilin 1 mutation associated with Pick's disease but not βâ€amyloid plaques. Annals of Neurology, 2004, 55, 617-626.	5.3	210
88	The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Human Mutation, 2004, 24, 277-295.	2.5	323
89	O3-02-07 Linkage analysis for AD using amyloid beta 42 levels shows evidence for a novel AD gene on chromosome 19. Neurobiology of Aging, 2004, 25, S56.	3.1	0
90	O4-06-03 A novel NR4A2 promoter variation associated with Parkinson's disease alters gene expression. Neurobiology of Aging, 2004, 25, S85.	3.1	0

#	Article	IF	CITATIONS
91	Novel APP mutation V715A associated with presenile Alzheimer?s disease in a German family. Journal of Neurology, 2003, 250, 1374-1375.	3.6	26
92	Tau (MAPT) mutation Arg406Trp presenting clinically with Alzheimer disease does not share a common founder in Western Europe. Human Mutation, 2003, 22, 409-411.	2.5	72
93	PRNP Val129 homozygosity increases risk for earlyâ€onset Alzheimer's disease. Annals of Neurology, 2003, 53, 409-412.	5.3	103
94	Early cognitive decline is associated with prion protein codon 129 polymorphism. Annals of Neurology, 2003, 54, 275-276.	5.3	43
95	Alzheimer-associated C allele of the promoter polymorphism -22C>T causes a critical neuron-specific decrease of presenilin 1 expression. Human Molecular Genetics, 2003, 12, 869-877.	2.9	45
96	Genetics of Early-Onset Alzheimer Dementia. Scientific World Journal, The, 2003, 3, 497-519.	2.1	40
97	The Gene Encoding Nicastrin, a Major \hat{I}^3 -Secretase Component, Modifies Risk for Familial Early-Onset Alzheimer Disease in a Dutch Population-Based Sample. American Journal of Human Genetics, 2002, 70, 1568-1574.	6.2	45
98	Diagnostic accuracy of the Preclinical AD Scale (PAS) in cognitively mildly impaired subjects. Journal of Neurology, 2002, 249, 312-319.	3.6	51
99	Tau negative frontal lobe dementia at 17q21: significant finemapping of the candidate region to a 4.8 cM interval. Molecular Psychiatry, 2002, 7, 1064-1074.	7.9	103
100	TheTNFRSF6 gene is not implicated in familial early-onset Alzheimer's disease. Human Genetics, 2001, 108, 552-553.	3.8	6
101	Amyloid \hat{I}^2 secretase gene (BACE) is neither mutated in nor associated with early-onset Alzheimer's disease. Neuroscience Letters, 2001, 313, 105-107.	2.1	47
102	Influence of the prion protein and the apolipoprotein E genotype on the Creutzfeldt–Jakob Disease phenotype. Neuroscience Letters, 2001, 313, 69-72.	2.1	44
103	The microtubule associated protein Tau gene and Alzheimer's disease – an association study and meta-analysis. Neuroscience Letters, 2001, 314, 92-96.	2.1	52
104	APOE epsilon4 and Alzheimer's disease: positive association in a Colombian clinical series and review of the Latin-American studies. Arquivos De Neuro-Psiquiatria, 2001, 59, 11-17.	0.8	29
105	APOLIPOPROTEIN E AND LONGEVITY: THE ROTTERDAM STUDY. Journal of the American Geriatrics Society, 2001, 49, 1258-1259.	2.6	24
106	Systematic genetic study of Alzheimer disease in Latin America: Mutation frequencies of the amyloid? precursor protein and presenilin genes in Colombia. American Journal of Medical Genetics Part A, 2001, 103, 138-143.	2.4	54
107	Apolipoprotein E and Carotid Artery Atherosclerosis. Stroke, 2001, 32, 1947-1952.	2.0	7 5
108	Cerebral amyloid angiopathy is a pathogenic lesion in Alzheimer's disease due to a novel presenilin 1 mutation. Brain, 2001, 124, 2383-2392.	7.6	70

#	Article	IF	Citations
109	Course of objective memory impairment in non-demented subjects attending a memory clinic and predictors of outcome. International Journal of Geriatric Psychiatry, 2000, 15, 363-372.	2.7	45
110	Familial Creutzfeldt-Jakob disease in a patient carrying both a presenilin 1 missense substitution and a prion protein gene insertion. Journal of Neurology, 2000, 247, 364-368.	3.6	32
111	Genetic variability in the regulatory region of presenilin 1 associated with risk for Alzheimer's disease and variable expression. Human Molecular Genetics, 2000, 9, 325-331.	2.9	77
112	Nonfibrillar diffuse amyloid deposition due to a gamma42-secretase site mutation points to an essential role for N-truncated Abeta42 in Alzheimer's disease. Human Molecular Genetics, 2000, 9, 2589-2598.	2.9	135
113	A High-Resolution Physical Map of Human Chromosome 21p Using Yeast Artificial Chromosomes. Genome Research, 1999, 9, 1059-1073.	5.5	23
114	Genetic association of the presenilin-1 regulatory region with early-onset Alzheimer's disease in a population-based sample. European Journal of Human Genetics, 1999, 7, 801-806.	2.8	49
115	Determination of the genomic organization of human presenilin 1 by fiber-FISH analysis and restriction mapping of cloned DNA. Mammalian Genome, 1999, 10, 410-414.	2.2	9
116	Apolipoprotein E genotype and progression of Alzheimer's disease: the Rotterdam Study. Journal of Neurology, 1999, 246, 304-308.	3.6	50
117	The Glu318Gly Substitution in Presenilin 1 Is Not Causally Related to Alzheimer Disease. American Journal of Human Genetics, 1999, 64, 290-292.	6.2	47
118	Evidence That A $\hat{1}^2$ 42 Plasma Levels in Presenilin-1 Mutation Carriers Do not Allow for Prediction of Their Clinical Phenotype. Neurobiology of Disease, 1999, 6, 280-287.	4.4	48
119	Mutation screening of the tau gene in patients with early-onset Alzheimer's disease. Neuroscience Letters, 1999, 277, 137-139.	2.1	43
120	Presenilin mutations in Alzheimer's disease. Human Mutation, 1998, 11, 183-190.	2.5	169
121	Missense mutation in exon 11 (codon 378) of the presenilin-1 gene in a French family with early-onset Alzheimer's disease and transmission study by mismatch enhanced allele specific amplification. Human Mutation, 1998, 11 , 481 - 481 .	2.5	19
122	Serum apolipoprotein E level is not increased in Alzheimer's disease: the Rotterdam study. Neuroscience Letters, 1998, 248, 21-24.	2.1	58
123	The â°'491 A/T polymorphism in the regulatory region of the Apolipoprotein E gene and early-onset Alzheimer's disease. Neuroscience Letters, 1998, 258, 65-68.	2.1	38
124	A Presenilin-1 Truncating Mutation Is Present in Two Cases with Autopsy-Confirmed Early-Onset Alzheimer Disease. American Journal of Human Genetics, 1998, 62, 70-76.	6.2	74
125	Genetic Association of Apolipoprotein E with Age-Related Macular Degeneration. American Journal of Human Genetics, 1998, 63, 200-206.	6.2	425
126	Risk Estimates of Dementia by Apolipoprotein E Genotypes From a Population-Based Incidence Study: The Rotterdam Study. Archives of Neurology, 1998, 55, 964.	4.5	378

#	Article	IF	CITATIONS
127	Estimation of the Genetic Contribution of Presenilin-1 and -2 Mutations in a Population-Based Study of Presenile Alzheimer Disease. Human Molecular Genetics, 1998, 7, 43-51.	2.9	396
128	Molecular genetics of Alzheimer's disease. Annals of Medicine, 1998, 30, 560-565.	3.8	131
129	Presenilin mutations in Alzheimer's disease. Human Mutation, 1998, 11, 183-190.	2.5	17
130	The presenilin genes: a new gene family involved in Alzheimer disease pathology. Human Molecular Genetics, 1996, 5, 1449-1455.	2.9	169
131	A yeast artificial chromosome contig from human chromosome 14q24 spanning the Alzheimer's disease locus AD3. Human Molecular Genetics, 1995, 4, 1347-1354.	2.9	20
132	Genetic and physical characterization of the early-onset Alzheimer's disease AD3 locus on chromosome 14q24.3. Human Molecular Genetics, 1995, 4, 1355-1364.	2.9	27
133	Molecular genetic analysis of familial early-onset Alzheimer's disease linked to chromosome 14q24.3. Human Molecular Genetics, 1995, 4, 2363-2371.	2.9	171
134	Mutation analysis of the chromosome 14q24.3 dihydrolipoyl succinyltransferase (DLST) gene in patients with early-onset Alzheimer disease. Neuroscience Letters, 1995, 199, 73-77.	2.1	9
135	Apolipoprotein E4 allele in a population–based study of early–onset Alzheimer's disease. Nature Genetics, 1994, 7, 74-78.	21.4	460
136	APOE genotype does not modulate age of onset in families with chromosome 14 encoded Alzheimer's disease. Neuroscience Letters, 1994, 169, 179-180.	2.1	130
137	Genetic analysis of the cellular oncogene fos in patients with chromosome 14 encoded Alzheimer's disease. Neuroscience Letters, 1994, 174, 97-100.	2.1	18
138	Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β–amyloid precursor protein gene. Nature Genetics, 1992, 1, 218-221.	21.4	715
139	Mapping of a gene predisposing to early–onset Alzheimer's disease to chromosome 14q24.3. Nature Genetics, 1992, 2, 335-339.	21.4	321
140	Amyloid precursor protein gene mutation in early-onset Alzheimer's disease. Lancet, The, 1991, 337, 978.	13.7	110
141	Subregional localization of the chromosome 21 loci D21S24 and D21S26 using physical mapping techniques. Human Genetics, 1991, 87, 109-111.	3.8	2
142	Genetics of frontotemporal dementia and related disorders. , 0, , 185-196.		1