
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3035468/publications.pdf

Version: 2024-02-01

IFDOEN DAES

#	Article	IF	CITATIONS
1	Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486, 207-214.	27.8	9,614
2	A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464, 59-65.	27.8	9,342
3	Enterotypes of the human gut microbiome. Nature, 2011, 473, 174-180.	27.8	5,800
4	A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490, 55-60.	27.8	5,345
5	Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500, 541-546.	27.8	3,641
6	Microbial interactions: from networks to models. Nature Reviews Microbiology, 2012, 10, 538-550.	28.6	2,693
7	A framework for human microbiome research. Nature, 2012, 486, 215-221.	27.8	2,249
8	Structure and function of the global ocean microbiome. Science, 2015, 348, 1261359.	12.6	2,137
9	Population-level analysis of gut microbiome variation. Science, 2016, 352, 560-564.	12.6	1,716
10	Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 2015, 528, 262-266.	27.8	1,627
11	Eukaryotic plankton diversity in the sunlit ocean. Science, 2015, 348, 1261605.	12.6	1,551
12	Human gut microbes impact host serum metabolome and insulin sensitivity. Nature, 2016, 535, 376-381.	27.8	1,506
13	Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science, 2016, 352, 565-569.	12.6	1,398
14	Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature Medicine, 2019, 25, 1096-1103.	30.7	1,281
15	Microbial Co-occurrence Relationships in the Human Microbiome. PLoS Computational Biology, 2012, 8, e1002606.	3.2	1,268
16	The neuroactive potential of the human gut microbiota in quality of life and depression. Nature Microbiology, 2019, 4, 623-632.	13.3	1,206
17	How informative is the mouse for human gut microbiota research?. DMM Disease Models and Mechanisms, 2015, 8, 1-16.	2.4	990
18	Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature Biotechnology, 2014, 32, 822-828.	17.5	909

#	Article	IF	CITATIONS
19	Modeling gene and genome duplications in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5454-5459.	7.1	850
20	Determinants of community structure in the global plankton interactome. Science, 2015, 348, 1262073.	12.6	842
21	Quantitative microbiome profiling links gut community variation to microbial load. Nature, 2017, 551, 507-511.	27.8	791
22	Duplication and Divergence: The Evolution of New Genes and Old Ideas. Annual Review of Genetics, 2004, 38, 615-643.	7.6	756
23	Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut, 2016, 65, 57-62.	12.1	737
24	Enterotypes in the landscape of gut microbial community composition. Nature Microbiology, 2018, 3, 8-16.	13.3	717
25	The resilience of the intestinal microbiota influences health and disease. Nature Reviews Microbiology, 2017, 15, 630-638.	28.6	696
26	Genome-Wide Characterization of the Lignification Toolbox in Arabidopsis Â. Plant Physiology, 2003, 133, 1051-1071.	4.8	689
27	Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics, 2021, 53, 156-165.	21.4	676
28	Plankton networks driving carbon export in the oligotrophic ocean. Nature, 2016, 532, 465-470.	27.8	670
29	Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nature Medicine, 2018, 24, 1532-1535.	30.7	629
30	Patterns and ecological drivers of ocean viral communities. Science, 2015, 348, 1261498.	12.6	617
31	Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nature Biotechnology, 2011, 29, 415-420.	17.5	608
32	Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME Journal, 2016, 10, 1669-1681.	9.8	593
33	The Human Gut Microbiome: From Association to Modulation. Cell, 2018, 172, 1198-1215.	28.9	558
34	The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME Journal, 2012, 6, 1415-1426.	9.8	544
35	Marine DNA Viral Macro- and Microdiversity from Pole to Pole. Cell, 2019, 177, 1109-1123.e14.	28.9	541
36	Genome-Wide Analysis of Core Cell Cycle Genes in Arabidopsis. Plant Cell, 2002, 14, 903-916.	6.6	523

#	Article	IF	CITATIONS
37	CoNet app: inference of biological association networks using Cytoscape. F1000Research, 2016, 5, 1519.	1.6	398
38	Computational approaches to predict bacteriophage–host relationships. FEMS Microbiology Reviews, 2016, 40, 258-272.	8.6	394
39	Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biology, 2013, 14, R4.	9.6	381
40	Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota Signatures of Crohn's Disease. PLoS ONE, 2012, 7, e49138.	2.5	374
41	Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut, 2017, 66, 1968-1974.	12.1	370
42	A Holistic Approach to Marine Eco-Systems Biology. PLoS Biology, 2011, 9, e1001177.	5.6	353
43	Metagenomics meets time series analysis: unraveling microbial community dynamics. Current Opinion in Microbiology, 2015, 25, 56-66.	5.1	345
44	Molecular eco-systems biology: towards an understanding of community function. Nature Reviews Microbiology, 2008, 6, 693-699.	28.6	339
45	CoNet app: inference of biological association networks using Cytoscape. F1000Research, 2016, 5, 1519.	1.6	331
46	Open science resources for the discovery and analysis of Tara Oceans data. Scientific Data, 2015, 2, 150023.	5.3	330
47	Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut, 2016, 65, 1681-1689.	12.1	312
48	Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiology Reviews, 2016, 40, 117-132.	8.6	303
49	A metagenomic insight into our gut's microbiome. Gut, 2013, 62, 146-158.	12.1	302
50	Quantitative Phylogenetic Assessment of Microbial Communities in Diverse Environments. Science, 2007, 315, 1126-1130.	12.6	300
51	A global ocean atlas of eukaryotic genes. Nature Communications, 2018, 9, 373.	12.8	297
52	Metagenomic <scp>16S rDNA I</scp> llumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environmental Microbiology, 2014, 16, 2659-2671.	3.8	291
53	Intestinal Microbiota And Diet in IBS: Causes, Consequences, or Epiphenomena?. American Journal of Gastroenterology, 2015, 110, 278-287.	0.4	283
54	Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581, 310-315.	27.8	283

#	Article	IF	CITATIONS
55	Prediction of effective genome size in metagenomic samples. Genome Biology, 2007, 8, R10.	9.6	281
56	Short chain fatty acids and its producing organisms: An overlooked therapy for IBD?. EBioMedicine, 2021, 66, 103293.	6.1	281
57	Species–function relationships shape ecological properties of the human gut microbiome. Nature Microbiology, 2016, 1, 16088.	13.3	279
58	Global Trends in Marine Plankton Diversity across Kingdoms of Life. Cell, 2019, 179, 1084-1097.e21.	28.9	271
59	Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome. Cell, 2019, 179, 1068-1083.e21.	28.9	268
60	Donor Species Richness Determines Faecal Microbiota Transplantation Success in Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2016, 10, 387-394.	1.3	256
61	Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutrition Research Reviews, 2015, 28, 42-66.	4.1	251
62	LotuS: an efficient and user-friendly OTU processing pipeline. Microbiome, 2014, 2, 30.	11.1	233
63	Brief Report: <i>Dialister</i> as a Microbial Marker of Disease Activity in Spondyloarthritis. Arthritis and Rheumatology, 2017, 69, 114-121.	5.6	233
64	Meeting Report: The Terabase Metagenomics Workshop and the Vision of an Earth Microbiome Project. Standards in Genomic Sciences, 2010, 3, 243-248.	1.5	228
65	Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. Rna, 2005, 11, 1530-1544.	3.5	226
66	Toward molecular traitâ€based ecology through integration of biogeochemical, geographical and metagenomic data. Molecular Systems Biology, 2011, 7, 473.	7.2	218
67	Assessment of Metagenomic Assembly Using Simulated Next Generation Sequencing Data. PLoS ONE, 2012, 7, e31386.	2.5	214
68	Microglia Require CD4ÂT Cells to Complete the Fetal-to-Adult Transition. Cell, 2020, 182, 625-640.e24.	28.9	191
69	Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME Journal, 2013, 7, 1678-1695.	9.8	185
70	Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biology, 2016, 17, 189.	8.8	183
71	Metabolic Functions of Gut Microbes Associate With Efficacy ofÂTumor Necrosis Factor Antagonists in Patients With Inflammatory Bowel Diseases. Gastroenterology, 2019, 157, 1279-1292.e11.	1.3	180
72	And then there were many: MADS goes genomic. Trends in Plant Science, 2003, 8, 475-483.	8.8	179

#	Article	IF	CITATIONS
73	Quantifying environmental adaptation of metabolic pathways in metagenomics. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1374-1379.	7.1	177
74	Soil microbiome responses to the shortâ€ŧerm effects of Amazonian deforestation. Molecular Ecology, 2015, 24, 2433-2448.	3.9	171
75	Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity. Nature Communications, 2021, 12, 4117.	12.8	170
76	Reporting guidelines for human microbiome research: the STORMS checklist. Nature Medicine, 2021, 27, 1885-1892.	30.7	170
77	Get the most out of your metagenome: computational analysis of environmental sequence data. Current Opinion in Microbiology, 2007, 10, 490-498.	5.1	169
78	Nonrandom divergence of gene expression following gene and genome duplications in the flowering plant Arabidopsis thaliana. Genome Biology, 2006, 7, R13.	9.6	163
79	Environmental characteristics of Agulhas rings affect interocean plankton transport. Science, 2015, 348, 1261447.	12.6	158
80	Cross-biome comparison of microbial association networks. Frontiers in Microbiology, 2015, 6, 1200.	3.5	154
81	Local immune response to food antigens drives meal-induced abdominal pain. Nature, 2021, 590, 151-156.	27.8	153
82	Quantitative microbiome profiling disentangles inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. Nature Microbiology, 2019, 4, 1826-1831.	13.3	149
83	Population-level analysis of <i>Blastocystis</i> subtype prevalence and variation in the human gut microbiota. Gut, 2019, 68, 1180-1189.	12.1	149
84	Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Scientific Data, 2017, 4, 170093.	5.3	147
85	Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nature Microbiology, 2020, 5, 1079-1087.	13.3	144
86	Practical considerations for large-scale gut microbiome studies. FEMS Microbiology Reviews, 2017, 41, S154-S167.	8.6	142
87	Nlrp6- and ASC-Dependent Inflammasomes Do Not Shape the Commensal Gut Microbiota Composition. Immunity, 2017, 47, 339-348.e4.	14.3	141
88	Transcriptome analysis during cell division in plants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14825-14830.	7.1	140
89	Millimeterâ€scale genetic gradients and communityâ€ l evel molecular convergence in a hypersaline microbial mat. Molecular Systems Biology, 2008, 4, 198.	7.2	139
90	Microbiology Meets Big Data: The Case of Gut Microbiota–Derived Trimethylamine. Annual Review of Microbiology, 2015, 69, 305-321.	7.3	133

#	Article	IF	CITATIONS
91	Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome, 2018, 6, 172.	11.1	131
92	The Automatic Detection of Homologous Regions (ADHoRe) and Its Application to Microcolinearity Between Arabidopsis and Rice. Genome Research, 2002, 12, 1792-1801.	5.5	127
93	Nonsense-mediated mRNA decay: target genes and functional diversification of effectors. Trends in Biochemical Sciences, 2006, 31, 639-646.	7.5	125
94	A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nature Communications, 2018, 9, 4630.	12.8	124
95	Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nature Communications, 2020, 11, 5881.	12.8	122
96	Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts. Genome Research, 2012, 22, 1974-1984.	5.5	120
97	Synthetic ecology of the human gut microbiota. Nature Reviews Microbiology, 2019, 17, 754-763.	28.6	117
98	Deletions Involving Long-Range Conserved Nongenic Sequences Upstream and Downstream of FOXL2 as a Novel Disease-Causing Mechanism in Blepharophimosis Syndrome. American Journal of Human Genetics, 2005, 77, 205-218.	6.2	116
99	The Gut Microbiome and Mental Health: Implications for Anxiety- and Trauma-Related Disorders. OMICS A Journal of Integrative Biology, 2018, 22, 90-107.	2.0	110
100	Genomewide Structural Annotation and Evolutionary Analysis of the Type I MADS-Box Genes in Plants. Journal of Molecular Evolution, 2003, 56, 573-586.	1.8	109
101	A20 controls intestinal homeostasis through cell-specific activities. Nature Communications, 2014, 5, 5103.	12.8	109
102	Meta-analysis of human genome-microbiome association studies: the MiBioGen consortium initiative. Microbiome, 2018, 6, 101.	11.1	109
103	Fecal Microbiota Transplantation Reduces Symptoms in Some Patients With Irritable Bowel Syndrome With Predominant Abdominal Bloating: Short- and Long-term Results From a Placebo-Controlled Randomized Trial. Gastroenterology, 2021, 160, 145-157.e8.	1.3	109
104	Induction of Bone Loss by Pathobiont-Mediated Nod1 Signaling in the Oral Cavity. Cell Host and Microbe, 2013, 13, 595-601.	11.0	108
105	Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Communications Biology, 2021, 4, 604.	4.4	107
106	Multi-stability and the origin of microbial community types. ISME Journal, 2017, 11, 2159-2166.	9.8	104
107	Combinatorial, additive and dose-dependent drug–microbiome associations. Nature, 2021, 600, 500-505.	27.8	102
108	Microbiome and metabolome features of the cardiometabolic disease spectrum. Nature Medicine, 2022, 28, 303-314.	30.7	102

#	Article	IF	CITATIONS
109	Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nature Communications, 2018, 9, 310.	12.8	101
110	The Probiotic Butyricicoccus pullicaecorum Reduces Feed Conversion and Protects from Potentially Harmful Intestinal Microorganisms and Necrotic Enteritis in Broilers. Frontiers in Microbiology, 2016, 7, 1416.	3.5	99
111	Butyrate Producers as Potential Next-Generation Probiotics: Safety Assessment of the Administration of <i>Butyricicoccus pullicaecorum</i> to Healthy Volunteers. MSystems, 2018, 3, .	3.8	99
112	Universally Distributed Single-Copy Genes Indicate a Constant Rate of Horizontal Transfer. PLoS ONE, 2011, 6, e22099.	2.5	99
113	The TORNADO1 and TORNADO2 Genes Function in Several Patterning Processes during Early Leaf Development in Arabidopsis thaliana. Plant Cell, 2006, 18, 852-866.	6.6	96
114	<i>Dysosmobacter welbionis</i> is a newly isolated human commensal bacterium preventing diet-induced obesity and metabolic disorders in mice. Gut, 2022, 71, 534-543.	12.1	95
115	Commensal microbiota influence systemic autoimmune responses. EMBO Journal, 2015, 34, 466-474.	7.8	93
116	Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. Microbiome, 2021, 9, 147.	11.1	92
117	SmashCommunity: a metagenomic annotation and analysis tool. Bioinformatics, 2010, 26, 2977-2978.	4.1	89
118	Temporal variability in quantitative human gut microbiome profiles and implications for clinical research. Nature Communications, 2021, 12, 6740.	12.8	89
119	Richness and ecosystem development across faecal snapshots of the gut microbiota. Nature Microbiology, 2018, 3, 526-528.	13.3	81
120	Community‣evel Responses to Iron Availability in Open Ocean Plankton Ecosystems. Global Biogeochemical Cycles, 2019, 33, 391-419.	4.9	76
121	Quantitative assessment of protein function prediction from metagenomics shotgun sequences. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13913-13918.	7.1	72
122	Towards biome-specific analysis of meta-omics data. ISME Journal, 2016, 10, 1025-1028.	9.8	72
123	Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. Nature Communications, 2016, 7, 11071.	12.8	72
124	Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biology and Biochemistry, 2017, 105, 227-235.	8.8	72
125	Reconciliation between operational taxonomic units and species boundaries. FEMS Microbiology Ecology, 2017, 93, .	2.7	71
126	Faecal Metaproteomic Analysis Reveals a Personalized and Stable Functional Microbiome and Limited Effects of a Probiotic Intervention in Adults. PLoS ONE, 2016, 11, e0153294.	2.5	70

#	Article	IF	CITATIONS
127	Microbial communities of the house fly Musca domestica vary with geographical location and habitat. Microbiome, 2019, 7, 147.	11.1	70
128	Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genomics, 2022, 2, 100123.	6.5	70
129	Tapping into the maize root microbiome to identify bacteria that promote growth under chilling conditions. Microbiome, 2020, 8, 54.	11.1	63
130	Integrated culturing, modeling and transcriptomics uncovers complex interactions and emergent behavior in a three-species synthetic gut community. ELife, 2018, 7, .	6.0	62
131	Functional divergence of proteins through frameshift mutations. Trends in Genetics, 2005, 21, 428-431.	6.7	61
132	Caspase deficiency alters the murine gut microbiome. Cell Death and Disease, 2011, 2, e220-e220.	6.3	61
133	Gut Microbiota Affects Sensitivity to Acute DSS-induced Colitis Independently of Host Genotype. Inflammatory Bowel Diseases, 2013, 19, 2560-2567.	1.9	61
134	Increased ILâ€10â€producing regulatory T cells are characteristic of severe cases of COVIDâ€19. Clinical and Translational Immunology, 2020, 9, e1204.	3.8	59
135	Gut microbiome variation is associated to Multiple Sclerosis phenotypic subtypes. Annals of Clinical and Translational Neurology, 2020, 7, 406-419.	3.7	59
136	CATCh, an Ensemble Classifier for Chimera Detection in 16S rRNA Sequencing Studies. Applied and Environmental Microbiology, 2015, 81, 1573-1584.	3.1	58
137	Red Wine Consumption Associated With Increased Gut Microbiota α-Diversity in 3 Independent Cohorts. Gastroenterology, 2020, 158, 270-272.e2.	1.3	58
138	Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut, 2021, 70, 2105-2114.	12.1	58
139	A web application for sample size and power calculation in case-control microbiome studies. Bioinformatics, 2016, 32, 2038-2040.	4.1	57
140	Depression and suicidality: A link to premature T helper cell aging and increased Th17 cells. Brain, Behavior, and Immunity, 2020, 87, 603-609.	4.1	57
141	Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nature Microbiology, 2021, 6, 1561-1574.	13.3	57
142	Assessment of faecal microbial transfer in irritable bowel syndrome with severe bloating. Gut, 2017, 66, 980-982.	12.1	56
143	Discovering Functional Novelty in Metagenomes: Examples from Light-Mediated Processes. Journal of Bacteriology, 2009, 191, 32-41.	2.2	54
144	Molecular characterization of Arabidopsis PHO80-like proteins, a novel class of CDKA;1-interacting cyclins. Cellular and Molecular Life Sciences, 2004, 61, 1485-97.	5.4	53

#	Article	IF	CITATIONS
145	Metformin induces weight loss associated with gut microbiota alteration in non-diabetic obese women: a randomized double-blind clinical trial. European Journal of Endocrinology, 2019, 180, 165-176.	3.7	53
146	Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut, 2022, 71, 2463-2480.	12.1	53
147	Investigating ancient duplication events in the Arabidopsis genome. Journal of Structural and Functional Genomics, 2003, 3, 117-129.	1.2	52
148	Interindividual differences in response to treatment with butyrate-producing Butyricicoccus pullicaecorum 25–3T studied in an in vitro gut model. FEMS Microbiology Ecology, 2015, 91, .	2.7	50
149	Clinical, gut microbial and neural effects of a probiotic add-on therapy in depressed patients: a randomized controlled trial. Translational Psychiatry, 2022, 12, .	4.8	49
150	Fire modifies the phylogenetic structure of soil bacterial coâ€occurrence networks. Environmental Microbiology, 2017, 19, 317-327.	3.8	48
151	Successional Stages in Infant Gut Microbiota Maturation. MBio, 2021, 12, e0185721.	4.1	48
152	From reads to operational taxonomic units: an ensemble processing pipeline for MiSeq amplicon sequencing data. GigaScience, 2017, 6, 1-10.	6.4	47
153	Low eukaryotic viral richness is associated with faecal microbiota transplantation success in patients with UC. Gut, 2018, 67, 1558-1559.	12.1	46
154	Prebiotic Wheat Bran Fractions Induce Specific Microbiota Changes. Frontiers in Microbiology, 2018, 9, 31.	3.5	45
155	A comparative analysis of the intestinal metagenomes present in guinea pigs (Cavia porcellus) and humans (Homo sapiens). BMC Genomics, 2012, 13, 514.	2.8	43
156	Clinical practices underlie COVID-19 patient respiratory microbiome composition and its interactions with the host. Nature Communications, 2021, 12, 6243.	12.8	42
157	Protein function space: viewing the limits or limited by our view?. Current Opinion in Structural Biology, 2007, 17, 362-369.	5.7	37
158	Meta-omics in Inflammatory Bowel Disease Research: Applications, Challenges, and Guidelines. Journal of Crohn's and Colitis, 2016, 10, 735-746.	1.3	37
159	Design of synthetic microbial consortia for gut microbiota modulation. Current Opinion in Pharmacology, 2019, 49, 52-59.	3.5	37
160	Gut microbiota dynamics and uraemic toxins: one size does not fit all. Gut, 2019, 68, 2257.1-2260.	12.1	37
161	Fecal Microbiota Transplantation (FMT) as an Adjunctive Therapy for Depression—Case Report. Frontiers in Psychiatry, 2022, 13, 815422.	2.6	37
162	A Molecular Study of Microbe Transfer between Distant Environments. PLoS ONE, 2008, 3, e2607.	2.5	36

#	Article	IF	CITATIONS
163	Introducing insoluble wheat bran as a gut microbiota niche in an <i>in vitro</i> dynamic gut model stimulates propionate and butyrate production and induces colon region specific shifts in the luminal and mucosal microbial community. Environmental Microbiology, 2018, 20, 3406-3426.	3.8	35
164	Go with the flow or solitary confinement: a look inside the single-cell toolbox for isolation of rare and uncultured microbes. Current Opinion in Microbiology, 2018, 44, 1-8.	5.1	34
165	The human microbiome in health and disease: hype or hope. Acta Clinica Belgica, 2019, 74, 53-64.	1.2	34
166	Dietary Emulsifiers Alter Composition and Activity of the Human Gut Microbiota in vitro, Irrespective of Chemical or Natural Emulsifier Origin. Frontiers in Microbiology, 2020, 11, 577474.	3.5	33
167	Investigating ancient duplication events in the Arabidopsis genome. Journal of Structural and Functional Genomics, 2003, 3, 117-29.	1.2	32
168	Variation and transmission of the human gut microbiota across multiple familial generations. Nature Microbiology, 2022, 7, 87-96.	13.3	32
169	An Improved Statistical Method for Detecting Heterotachy in Nucleotide Sequences. Molecular Biology and Evolution, 2006, 23, 1397-1405.	8.9	31
170	Speciesâ€sorting and massâ€transfer paradigms control managed natural metacommunities. Environmental Microbiology, 2016, 18, 4862-4877.	3.8	31
171	Translating the human microbiome. Nature Biotechnology, 2013, 31, 304-308.	17.5	30
172	IPED: a highly efficient denoising tool for Illumina MiSeq Paired-end 16S rRNAÂgene amplicon sequencing data. BMC Bioinformatics, 2016, 17, 192.	2.6	30
173	Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases. Nature Communications, 2021, 12, 3562.	12.8	30
174	The virota and its transkingdom interactions in the healthy infant gut. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114619119.	7.1	30
175	Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours. Molecular Systems Biology, 2012, 8, 581.	7.2	29
176	Gene duplication, the evolution of novel gene functions, and detecting functional divergence of duplicates in silico. Applied Bioinformatics, 2003, 2, 91-101.	1.6	29
177	<i>In silico</i> analyses of pericycle cell populations reinforce their relation with associated vasculature in <i>Arabidopsis</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1479-1488.	4.0	27
178	Investigating ancient duplication events in the Arabidopsis genome. , 2003, , 117-129.		27
179	Exploring the relationship between the gut microbiome and mental health outcomes in a posttraumatic stress disorder cohort relative to trauma-exposed controls. European Neuropsychopharmacology, 2022, 56, 24-38.	0.7	26
180	A Nitrile Hydratase in the Eukaryote Monosiga brevicollis. PLoS ONE, 2008, 3, e3976.	2.5	24

#	Article	IF	CITATIONS
181	SmashCell: a software framework for the analysis of single-cell amplified genome sequences. Bioinformatics, 2010, 26, 2979-2980.	4.1	24
182	Relationship between genome and epigenome - challenges and requirements for future research. BMC Genomics, 2014, 15, 487.	2.8	24
183	A Proposal for a Study on Treatment Selection and Lifestyle Recommendations in Chronic Inflammatory Diseases: A Danish Multidisciplinary Collaboration on Prognostic Factors and Personalised Medicine. Nutrients, 2017, 9, 499.	4.1	24
184	Multiomics Analyses to Deliver the Most Effective Treatment to Every Patient With Inflammatory Bowel Disease. Gastroenterology, 2018, 155, e1-e4.	1.3	24
185	Macroscale patterns of oceanic zooplankton composition and size structure. Scientific Reports, 2021, 11, 15714.	3.3	24
186	Duodenal Dysbiosis and Relation to the Efficacy of Proton Pump Inhibitors in Functional Dyspepsia. International Journal of Molecular Sciences, 2021, 22, 13609.	4.1	23
187	The chemical interactome space between the human host and the genetically defined gut metabotypes. ISME Journal, 2013, 7, 730-742.	9.8	21
188	Addition of acacia gum to a FOS/inulin blend improves its fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). Journal of Functional Foods, 2015, 16, 211-222.	3.4	21
189	Disentangling environmental effects in microbial association networks. Microbiome, 2021, 9, 232.	11.1	21
190	A combinatorial approach to the structure elucidation of a pyoverdine siderophore produced by a Pseudomonas putida isolate and the use of pyoverdine as a taxonomic marker for typing P. putida subspecies. BioMetals, 2013, 26, 561-575.	4.1	18
191	Microbiome-based companion diagnostics: no longer science fiction?. Gut, 2016, 65, 896-897.	12.1	18
192	The Effect of ß-Glucan Prebiotic on Kidney Function, Uremic Toxins and Gut Microbiome in Stage 3 to 5 Chronic Kidney Disease (CKD) Predialysis Participants: A Randomized Controlled Trial. Nutrients, 2022, 14, 805.	4.1	18
193	Rules of the game for microbiota. Nature, 2016, 534, 182-183.	27.8	17
194	GeneFarm, structural and functional annotation of Arabidopsis gene and protein families by a network of experts. Nucleic Acids Research, 2004, 33, D641-D646.	14.5	16
195	Effect of obesity on gastrointestinal transit, pressure and pH using a wireless motility capsule. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 167, 1-8.	4.3	16
196	Small-Scale Gene Duplications. , 2005, , 289-327.		15
197	The skin microbiome of caspaseâ€14â€deficient mice shows mild dysbiosis. Experimental Dermatology, 2014, 23, 561-567.	2.9	15
198	Impact of red and processed meat and fibre intake on treatment outcomes among patients with chronic inflammatory diseases: protocol for a prospective cohort study of prognostic factors and personalised medicine. BMJ Open, 2018, 8, e018166.	1.9	15

#	Article	IF	CITATIONS
199	GWAS of stool frequency provides insights into gastrointestinal motility and irritable bowel syndrome. Cell Genomics, 2021, 1, 100069.	6.5	15
200	Tracking humans and microbes. Nature, 2019, 569, 632-633.	27.8	14
201	Worldwide trends in scientific publications on association of gut microbiota with obesity. Iranian Journal of Basic Medical Sciences, 2019, 22, 65-71.	1.0	14
202	Zinc inhibits lethal inflammatory shock by preventing microbeâ€induced interferon signature in intestinal epithelium. EMBO Molecular Medicine, 2020, 12, e11917.	6.9	14
203	NoDe: a fast error-correction algorithm for pyrosequencing amplicon reads. BMC Bioinformatics, 2015, 16, 88.	2.6	13
204	Unstable regulatory T cells, enriched for naÃ ⁻ ve and Nrp1 ^{neg} cells, are purged after fate challenge. Science Immunology, 2021, 6, .	11.9	13
205	<i>Lactobacillus rhamnosus</i> CNCM I-3690 decreases subjective academic stress in healthy adults: a randomized placebo-controlled trial. Gut Microbes, 2022, 14, 2031695.	9.8	13
206	Gut Microbiome Profiling Uncovers a Lower Abundance of Butyricicoccus in Advanced Stages of Chronic Kidney Disease. Journal of Personalized Medicine, 2021, 11, 1118.	2.5	11
207	Analysis of the draft genome of Pseudomonas fluorescens ATCC17400 indicates a capacity to take up iron from a wide range of sources, including different exogenous pyoverdines. BioMetals, 2014, 27, 633-644.	4.1	10
208	Comparisons of gut microbiota profiles in wild-type and gelatinase B/matrix metalloproteinase-9-deficient mice in acute DSS-induced colitis. Npj Biofilms and Microbiomes, 2018, 4, 18.	6.4	10
209	Treponema peruense sp. nov., a commensal spirochaete isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	10
210	Water activity does not shape the microbiota in the human colon. Gut, 2017, 66, 1865-1866.	12.1	9
211	In vitro ecology: a discovery engine for microbiome therapies. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 711-712.	17.8	9
212	Null-model-based network comparison reveals core associations. ISME Communications, 2021, 1, .	4.2	9
213	Isolation of wheat bran-colonizing and metabolizing species from the human fecal microbiota. PeerJ, 2019, 7, e6293.	2.0	9
214	Microbiota, not host origin drives <i>ex vivo</i> intestinal epithelial responses. Gut Microbes, 2022, 14, .	9.8	8
215	Interactions between soil compositions and the wheat root microbiome under drought stress: From an in silico to in planta perspective. Computational and Structural Biotechnology Journal, 2021, 19, 4235-4247.	4.1	7
216	Nutrient load acts as a driver of gut microbiota load, community composition and metabolic functionality in the simulator of the human intestinal microbial ecosystem. FEMS Microbiology Ecology, 2021, 97, .	2.7	7

#	Article	IF	CITATIONS
217	FLEXiGUT: Rationale for exposomics associations with chronic low-grade gut inflammation. Environment International, 2022, 158, 106906.	10.0	7
218	The Genomic Sequence of the Oral Pathobiont Strain NI1060 Reveals Unique Strategies for Bacterial Competition and Pathogenicity. PLoS ONE, 2016, 11, e0158866.	2.5	6
219	Fast quantification of gut bacterial species in cocultures using flow cytometry and supervised classification. ISME Communications, 2022, 2, .	4.2	6
220	Effect of cryopreservation medium conditions on growth and isolation of gut anaerobes from human faecal samples. Microbiome, 2022, 10, .	11.1	6
221	High Serum Vitamin D Concentrations, Induced via Diet, Trigger Immune and Intestinal Microbiota Alterations Leading to Type 1 Diabetes Protection in NOD Mice. Frontiers in Immunology, 0, 13, .	4.8	6
222	Therapeutic Manipulation of the Gut Microbiota Through Diet to Reduce Intestinal Inflammation: Results from the FIT Trial. Gastroenterology, 2017, 152, S1.	1.3	5
223	Wheat bran with reduced particle size increases serum SCFAs in obese subjects without improving health parameters compared with a maltodextrin placebo. American Journal of Clinical Nutrition, 2021, 114, 1328-1341.	4.7	5
224	Specific contributions of segmental transit times to gut microbiota composition. Gut, 2021, , gutjnl-2021-325916.	12.1	4
225	Editorial overview: It's the ecology, stupid: microbiome research in the post-stamp collecting age. Current Opinion in Microbiology, 2018, 44, iv-v.	5.1	3
226	OP03 Standardized faecal microbiota transplantation with microbiome-guided donor selection in active UC patients: A randomized, placebo-controlled intervention study. Journal of Crohn's and Colitis, 2022, 16, i003-i004.	1.3	3
227	The effect of oral iron supplementation on the gut microbiota, gut inflammation, and iron status in iron-depleted South African school-age children with virally suppressed HIV and without HIV. European Journal of Nutrition, 2022, 61, 2067-2078.	3.9	3
228	The gut microbiome - a new target for understanding, diagnosing and treating disease. Archives of Public Health, 2014, 72, .	2.4	2
229	Crowdsourcing Earth's microbes. Nature, 2017, 551, 446-447.	27.8	2
230	Sputum Bacterial Metacommunities in Distinguishing Heterogeneity in Respiratory Health and Disease. Frontiers in Microbiology, 2022, 13, 719541.	3.5	2
231	Matrix Metalloproteinase/MMP-9 Gene Knockout does not Influence Changes in Gut Microbiota in a Model of Acute Dextran Sodium Sulphate/DSS-Induced Colitis. Gastroenterology, 2017, 152, S623.	1.3	1
232	P774 Metagenomics and metabolomics of patients with inflammatory bowel disease and their unaffected relatives. Journal of Crohn's and Colitis, 2017, 11, S476-S477.	1.3	1
233	P767 The FIT trial: anti-inflammatory dietary intervention effects on the intestinal microbiota. Journal of Crohn's and Colitis, 2017, 11, S473-S473.	1.3	1
234	P078 Gut microbiome profiling of MMP-9 deficient mice and their wild-type littermates in a model of acute DSS-induced colitis. Journal of Crohn's and Colitis, 2017, 11, S116-S117.	1.3	1

#	Article	IF	CITATIONS
235	Expanding the scope and scale of microbiome research. Genome Biology, 2019, 20, 191.	8.8	1
236	P836 The predictive role of gut microbiota in treatment response to vedolizumab and ustekinumab in in inflammatory bowel disease. Journal of Crohn's and Colitis, 2019, 13, S542-S542.	1.3	1
237	Practical guidelines for gut microbiome analysis in microbiota-gut-brain axis research. Behavioral and Brain Sciences, 2019, 42, .	0.7	1
238	P004 Microbiota, not host origin drives ex vivo epithelial response in ulcerative colitis patients and non-IBD controls. Journal of Crohn's and Colitis, 2022, 16, i136-i136.	1.3	1
239	P095 Anti-inflammatory effect of high acetate concentration on organoid-derived epithelial monolayer from patients with Ulcerative Colitis. Journal of Crohn's and Colitis, 2022, 16, i192-i195.	1.3	1
240	MO590: A Home-Based Exercise and Physical Activity Intervention After Kidney Transplantation: Impact of Exercise Intensity. The Phoenix-Kidney Study Protocol. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	1
241	An implementation approach for local area networks. Computer Networks, 1987, 14, 365-372.	1.0	Ο
242	Tu1713 Host-Microbiome Interactions in Primary Sclerosing Cholangitis. Gastroenterology, 2016, 150, S927-S928.	1.3	0
243	Su1909 Genetic Risk for Crohn's Disease has Little Impact on Intestinal Microbiota Composition. Gastroenterology, 2016, 150, S585-S586.	1.3	0
244	Profiling of the Fecal Microbiota and Metabolome in Patients with Inflammatory Bowel Disease and their Unaffected Relatives. Gastroenterology, 2017, 152, S991.	1.3	0
245	P776 Dysbiosis in Nlrp6/Asc-deficient mice does not result from inflammasome deficiency. Journal of Crohn's and Colitis, 2017, 11, S477-S478.	1.3	0
246	Early-Career Scientists Shaping the World. MSystems, 2019, 4, .	3.8	0
247	OP20 The gut microbiota during biological therapy for inflammatory bowel disease. Journal of Crohn's and Colitis, 2020, 14, S016-S018.	1.3	Ο
248	P676 The small intestinal microbiome in Crohn's disease is characterised by increased luminal diversity and stable mucosa-associated communities. Journal of Crohn's and Colitis, 2021, 15, S597-S598.	1.3	0
249	P082 Assessment of anti-inflammatory effect of high acetate administration in UC patient-derived epithelial monolayer cultures. Journal of Crohn's and Colitis, 2021, 15, S182-S183.	1.3	О