Katrin Krause

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3035402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal adaptation and transport in hyphae of the wood-rot fungus Schizophyllum commune. Journal of Hazardous Materials, 2022, 425, 127978.	12.4	14
2	Geosmin synthase <i>ges1</i> knockâ€down by siRNA in the dikaryotic fungus <i>Tricholoma vaccinum</i> . Journal of Basic Microbiology, 2022, 62, 109-115.	3.3	3
3	Ectomycorrhizal Influence on the Dynamics of Sesquiterpene Release by Tricholoma vaccinum. Journal of Fungi (Basel, Switzerland), 2022, 8, 555.	3.5	6
4	Phytohormones and volatile organic compounds, like geosmin, in the ectomycorrhiza of Tricholoma vaccinum and Norway spruce (Picea abies). Mycorrhiza, 2021, 31, 173-188.	2.8	16
5	Function of sesquiterpenes from Schizophyllum commune in interspecific interactions. PLoS ONE, 2021, 16, e0245623.	2.5	10
6	What Role Might Non-Mating Receptors Play in Schizophyllum commune?. Journal of Fungi (Basel,) Tj ETQq0 0 0	rgßŢ /Ovei	lock 10 Tf 5
7	Inositol Signaling in the Basidiomycete Fungus Schizophyllum commune. Journal of Fungi (Basel,) Tj ETQq1 1 0.78	34314 rgB 3.5	T ¦Overlock
8	Organic acids, siderophores, enzymes and mechanical pressure for black slate bioweathering with the basidiomycete <i>Schizophyllum commune</i> . Environmental Microbiology, 2020, 22, 1535-1546.	3.8	33
0	Response of the wood-decay fungus Schizophyllum commune to co-occurring microorganisms. PLoS	95	10

9	ONĖ, 2020, 15, e0232145.	2.0	19
10	Metal release and sequestration from black slate mediated by a laccase of Schizophyllum commune. Environmental Science and Pollution Research, 2019, 26, 5-13.	5.3	6
11	The Ectomycorrhizospheric Habitat of Norway Spruce and Tricholoma vaccinum: Promotion of Plant Growth and Fitness by a Rich Microorganismic Community. Frontiers in Microbiology, 2019, 10, 307.	3.5	19
12	Crosstalk between Ras and inositol phosphate signaling revealed by lithium action on inositol monophosphatase in Schizophyllum commune. Advances in Biological Regulation, 2019, 72, 78-88.	2.3	8
13	Smelling the difference: Transcriptome, proteome and volatilome changes after mating. Fungal Genetics and Biology, 2018, 112, 2-11.	2.1	21
14	Enzymatic Bioweathering and Metal Mobilization From Black Slate by the Basidiomycete Schizophyllum commune. Frontiers in Microbiology, 2018, 9, 2545.	3.5	9
15	The regulator of Gâ€protein signalling Thn1 links pheromone response to volatile production in <i>Schizophyllum commune</i> . Environmental Microbiology, 2018, 20, 3684-3699.	3.8	9
16	Response to lead pollution: mycorrhizal Pinus sylvestris forms the biomineral pyromorphite in roots and needles. Environmental Science and Pollution Research, 2017, 24, 14455-14462.	5.3	7
17	Influence of zygomyceteâ€derived <scp>D</scp> 'orenone on <scp>IAA</scp> signalling in <scp><i>T</i></scp> <i>richoloma</i> â€spruce ectomycorrhiza. Environmental Microbiology, 2016, 18, 2470-2480.	3.8	9
18	Dehydrogenase genes in the ectomycorrhizal fungus <i>Tricholoma vaccinum</i> : A role for Ald1 in	3.3	7

8 mycorrhizal symbiosis. Journal of Basic Microbiology, 2016, 56, 162-174.

KATRIN KRAUSE

#	Article	IF	CITATIONS
19	Hydrophobins in the Life Cycle of the Ectomycorrhizal Basidiomycete Tricholoma vaccinum. PLoS ONE, 2016, 11, e0167773.	2.5	35
20	Dynein Heavy Chain, Encoded by Two Genes in Agaricomycetes, Is Required for Nuclear Migration in Schizophyllum commune. PLoS ONE, 2015, 10, e0135616.	2.5	9
21	<i>Tricholoma vaccinum</i> host communication during ectomycorrhiza formation. FEMS Microbiology Ecology, 2015, 91, fiv120.	2.7	15
22	A transporter for abiotic stress and plant metabolite resistance in the ectomycorrhizal fungus Tricholoma vaccinum. Environmental Science and Pollution Research, 2015, 22, 19384-19393.	5.3	22
23	Monitoring metabolites from Schizophyllum commune interacting with Hypholoma fasciculare combining LESA–HR mass spectrometry and Raman microscopy. Analytical and Bioanalytical Chemistry, 2015, 407, 2273-2282.	3.7	25
24	Biosynthesis and Secretion of Indole-3-Acetic Acid and Its Morphological Effects on Tricholoma vaccinum-Spruce Ectomycorrhiza. Applied and Environmental Microbiology, 2015, 81, 7003-7011.	3.1	63
25	Differential regulation of multi-copper oxidases in Schizophyllum commune during sexual development. Mycological Progress, 2014, 13, 1199.	1.4	21
26	11 Ectomycorrhiza-Specific Gene Expression. , 2013, , 295-312.		2
27	Role of Mycorrhiza in Re-forestation at Heavy Metal-Contaminated Sites. Soil Biology, 2012, , 183-199.	0.8	3
28	Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum. Mycorrhiza, 2012, 22, 471-484.	2.8	33
29	Use of RNA fingerprinting to identify fungal genes specifically expressed during ectomycorrhizal interaction. Journal of Basic Microbiology, 2006, 46, 387-399.	3.3	21
30	Identification of a Hydrophobin Gene That is Developmentally Regulated in the Ectomycorrhizal Fungus Tricholoma terreum. Applied and Environmental Microbiology, 2002, 68, 1408-1413.	3.1	65