Andrew M Weiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3034409/publications.pdf

Version: 2024-02-01

178 9,507 47
papers citations h-index

181 181 5161 all docs docs citations times ranked citing authors

94

g-index

#	Article	IF	CITATIONS
1	Ultrafast optical pulse shaping: A tutorial review. Optics Communications, 2011, 284, 3669-3692.	1.0	544
2	Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photonics, 2015, 9, 594-600.	15.6	459
3	Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photonics, 2007, 1, 463-467.	15.6	449
4	Micro-combs: A novel generation of optical sources. Physics Reports, 2018, 729, 1-81.	10.3	448
5	Optical arbitrary waveform generation. Nature Photonics, 2010, 4, 760-766.	15.6	439
6	Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photonics, 2011, 5, 770-776.	15.6	402
7	Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nature Photonics, 2010, 4, 117-122.	15.6	335
8	Optical frequency comb technology for ultraâ€broadband radioâ€frequency photonics. Laser and Photonics Reviews, 2014, 8, 368-393.	4.4	327
9	Quantum optical microcombs. Nature Photonics, 2019, 13, 170-179.	15.6	295
10	Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nature Photonics, 2012, 6, 186-194.	15.6	266
11	Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 3269-3278.	2.9	195
12	Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica, 2014, 1, 137.	4.8	186
13	Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies. PRX Quantum, 2021, 2, .	3.5	172
14	High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nature Communications, 2018, 9, 1598.	5 . 8	167
15	Normalâ€dispersion microcombs enabled by controllable mode interactions. Laser and Photonics Reviews, 2015, 9, L23.	4.4	159
16	Microresonator Kerr frequency combs with high conversion efficiency. Laser and Photonics Reviews, 2017, 11, 1600276.	4.4	153
17	2022 Roadmap on integrated quantum photonics. JPhys Photonics, 2022, 4, 012501.	2.2	152
18	High-Power Broadly Tunable Electrooptic Frequency Comb Generator. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 231-236.	1.9	150

#	Article	IF	CITATIONS
19	High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica, 2016, 3, 1171.	4.8	148
20	Programmable Single-Bandpass Photonic RF Filter Based on Kerr Comb from a Microring. Journal of Lightwave Technology, 2014, 32, 3557-3565.	2.7	136
21	50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Optics Express, 2018, 26, 1825.	1.7	134
22	Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing. Physical Review Letters, 2018, 120, 030502.	2.9	126
23	Observation of Fermi-Pasta-Ulam Recurrence Induced by Breather Solitons in an Optical Microresonator. Physical Review Letters, 2016, 117, 163901.	2.9	116
24	Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nature Communications, 2017, 8, 372.	5.8	108
25	Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nature Communications, 2015, 6, 5957.	5.8	107
26	A temporal cloak at telecommunication data rate. Nature, 2013, 498, 205-208.	13.7	103
27	Photonic generation of W-band arbitrary waveforms with high time-bandwidth products enabling 39  mm range resolution. Optica, 2014, 1, 446.	4.8	101
28	Intracavity characterization of micro-comb generation in the single-soliton regime. Optics Express, 2016, 24, 10890.	1.7	101
29	High-dimensional optical quantum logic in large operational spaces. Npj Quantum Information, 2019, 5,	2.8	92
30	Reconfigurable and Tunable Flat-Top Microwave Photonic Filters Utilizing Optical Frequency Combs. IEEE Photonics Technology Letters, 2011, 23, 1618-1620.	1.3	88
31	Quantum interference and correlation control of frequency-bin qubits. Optica, 2018, 5, 1455.	4.8	88
32	Simulations of subatomic many-body physics on a quantum frequency processor. Physical Review A, 2019, 100, .	1.0	87
33	Advances in Spectral Optical Code-Division Multiple-Access Communications. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1351-1369.	1.9	86
34	Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation. Light: Science and Applications, 2017, 6, e16253-e16253.	7.7	83
35	Spectral Line-by-Line Pulse Shaping on an Optical Frequency Comb Generator. IEEE Journal of Quantum Electronics, 2007, 43, 1163-1174.	1.0	74
36	Spatial mode-interaction induced single soliton generation in microresonators. Optica, 2017, 4, 1011.	4.8	74

#	Article	IF	CITATIONS
37	Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals. IEEE Transactions on Microwave Theory and Techniques, 2006, 54, 4247-4255.	2.9	72
38	Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs. Optics Express, 2012, 20, 29284.	1.7	71
39	Ultrafast double-pulse ablation of fused silica. Applied Physics Letters, 2005, 86, 151110.	1.5	68
40	Microcomb-Based True-Time-Delay Network for Microwave Beamforming With Arbitrary Beam Pattern Control. Journal of Lightwave Technology, 2018, 36, 2312-2321.	2.7	68
41	Photonic synthesis of high fidelity microwave arbitrary waveforms using near field frequency to time mapping. Optics Express, 2013, 21, 22974.	1.7	67
42	Roadmap on transformation optics. Journal of Optics (United Kingdom), 2018, 20, 063001.	1.0	64
43	Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb. Optica, 2017, 4, 655.	4.8	61
44	A controlled-NOT gate for frequency-bin qubits. Npj Quantum Information, 2019, 5, .	2.8	61
45	Recent Advances in Programmable Photonic-Assisted Ultrabroadband Radio-Frequency Arbitrary Waveform Generation. IEEE Journal of Quantum Electronics, 2016, 52, 1-17.	1.0	60
46	Direct soliton generation in microresonators. Optics Letters, 2017, 42, 2519.	1.7	60
47	Experimental Investigation of Security Issues in O-CDMA. Journal of Lightwave Technology, 2006, 24, 4228-4234.	2.7	59
48	Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering. Optics Express, 2016, 24, 23925.	1.7	53
49	Reconfigurable Quantum Local Area Network Over Deployed Fiber. PRX Quantum, 2021, 2, .	3.5	46
50	Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region. Optics Express, 2015, 23, 9618.	1.7	44
51	Normal-dispersion microresonator Kerr frequency combs. Nanophotonics, 2016, 5, 244-262.	2.9	44
52	Dissipative cnoidal waves (Turing rolls) and the soliton limit in microring resonators. Optica, 2019, 6, 1220.	4.8	42
53	Adaptive bandwidth management for entanglement distribution in quantum networks. Optica, 2021, 8, 329.	4.8	41
54	Drop-port study of microresonator frequency combs: power transfer, spectra and time-domain characterization. Optics Express, 2013, 21, 22441.	1.7	40

#	Article	IF	CITATIONS
55	Orthogonal Spectral Coding of Entangled Photons. Physical Review Letters, 2014, 112, 133602.	2.9	40
56	Long-haul coherent communications using microresonator-based frequency combs. Optics Express, 2017, 25, 26678.	1.7	40
57	Frequency-domain Hong–Ou–Mandel interference with linear optics. Optics Letters, 2018, 43, 2760.	1.7	40
58	Soliton repetition rate in a silicon-nitride microresonator. Optics Letters, 2017, 42, 759.	1.7	37
59	Directly Generated Gaussian-Shaped Optical Frequency Comb for Microwave Photonic Filtering and Picosecond Pulse Generation. IEEE Photonics Technology Letters, 2012, 24, 1484-1486.	1.3	35
60	Photonic Synthesis of Spread Spectrum Radio Frequency Waveforms With Arbitrarily Long Time Apertures. Journal of Lightwave Technology, 2014, 32, 3580-3587.	2.7	35
61	Characterization of coherent quantum frequency combs using electro-optic phase modulation. Physical Review A, 2018, 97, .	1.0	35
62	Quantum Information Processing With Frequency-Comb Qudits. IEEE Photonics Technology Letters, 2019, 31, 1858-1861.	1.3	34
63	Fully Arbitrary Control of Frequency-Bin Qubits. Physical Review Letters, 2020, 125, 120503.	2.9	33
64	Dispersion Limitations of Ultra-Wideband Wireless Links and Their Compensation Via Photonically Enabled Arbitrary Waveform Generation. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 710-719.	2.9	30
65	Temporal cloaking for data suppression and retrieval. Optica, 2014, 1, 372.	4.8	30
66	Switching dynamics of dark-pulse Kerr frequency comb states in optical microresonators. Physical Review A, 2021, 103, .	1.0	30
67	Experimental Investigation of UWB Impulse Response and Time Reversal Technique Up to 12 GHz: Omnidirectional and Directional Antennas. IEEE Transactions on Antennas and Propagation, 2012, 60, 3407-3415.	3.1	28
68	A Complete Spectral Polarimeter Design for Lightwave Communication Systems. Journal of Lightwave Technology, 2006, 24, 3982-3991.	2.7	27
69	Phase-Only Matched Filtering of Ultrawideband Arbitrary Microwave Waveforms via Optical Pulse Shaping. Journal of Lightwave Technology, 2008, 26, 2355-2363.	2.7	26
70	Multichannel Radio-Frequency Arbitrary Waveform Generation Based on Multiwavelength Comb Switching and 2-D Line-by-Line Pulse Shaping. IEEE Photonics Technology Letters, 2012, 24, 891-893.	1.3	26
71	Cavity solitons come of age. Nature Photonics, 2017, 11, 533-535.	15.6	25
72	Rapidly Tunable Dual-Comb RF Photonic Filter for Ultrabroadband RF Spread Spectrum Applications. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 3351-3362.	2.9	23

#	Article	IF	CITATIONS
73	Observation of Breathing Dark Pulses in Normal Dispersion Optical Microresonators. Physical Review Letters, 2018, 121, 257401.	2.9	23
74	Selective Correlation Detection of Photonically Generated Ultrawideband RF Signals. Journal of Lightwave Technology, 2008, 26, 2692-2699.	2.7	21
75	Post-Compensation of Ultra-Wideband Antenna Dispersion Using Microwave Photonic Phase Filters and Its Applications to UWB Systems. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 890-898.	2.9	21
76	Microwave photonics connected with microresonator frequency combs. Frontiers of Optoelectronics, 2016, 9, 238-248.	1.9	20
77	Quantum frequency combs and Hong–Ou–Mandel interferometry: the role of spectral phase coherence. Optics Express, 2019, 27, 38683.	1.7	20
78	Probing quantum walks through coherent control of high-dimensionally entangled photons. Science Advances, 2020, 6, eaba8066.	4.7	19
79	Superchannel engineering of microcombs for optical communications. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2013.	0.9	19
80	Ultrabroadband radio-frequency arbitrary waveform generation with high-speed phase and amplitude modulation capability. Optics Express, 2015, 23, 12265.	1.7	18
81	Synthesis of Millimeter-Wave Power Spectra Using Time-Multiplexed Optical Pulse Shaping. IEEE Photonics Technology Letters, 2009, 21, 1287-1289.	1.3	17
82	Compression of ultra-long microwave pulses using programmable microwave photonic phase filtering with > 100 complex-coefficient taps. Optics Express, 2014, 22, 6329.	1.7	17
83	Generation of biphoton correlation trains through spectral filtering. Optics Express, 2014, 22, 9585.	1.7	17
84	Noise Comparison of RF Photonic Filters Based on Coherent and Incoherent Multiwavelength Sources. IEEE Photonics Technology Letters, 2012, 24, 1236-1238.	1.3	16
85	Comb-Based RF Photonic Filters Based on Interferometric Configuration and Balanced Detection. Journal of Lightwave Technology, 2014, 32, 3478-3488.	2.7	16
86	All-Order Polarization-Mode Dispersion (PMD) Compensation via Virtually Imaged Phased Array (VIPA)-Based Pulse Shaper. IEEE Photonics Technology Letters, 2008, 20, 545-547.	1.3	15
87	All-Optical Frequency Processor for Networking Applications. Journal of Lightwave Technology, 2020, 38, 1678-1687.	2.7	15
88	High-dimensional discrete Fourier transform gates with a quantum frequency processor. Optics Express, 2022, 30, 10126.	1.7	15
89	Phase compensation communication technique against time reversal for ultraâ€wideband channels. IET Communications, 2013, 7, 1287-1295.	1.5	13
90	Performance of Asynchronous Time-Spreading and Spectrally Coded OCDMA Systems. Journal of Lightwave Technology, 2008, 26, 2873-2881.	2.7	12

#	Article	IF	CITATIONS
91	Microresonator Frequency Combs for Integrated Microwave Photonics. IEEE Photonics Technology Letters, 2018, 30, 1814-1817.	1.3	12
92	Deterministic access of broadband frequency combs in microresonators using cnoidal waves in the soliton crystal limit. Optics Express, 2020, 28, 36304.	1.7	11
93	Performance of Nonlinear Receivers in Asynchronous Spectral-Phase-Encoding Optical CDMA Systems. Journal of Lightwave Technology, 2007, 25, 2069-2080.	2.7	10
94	Radio-Frequency Signal Processing Using Optical Frequency Combs. IEEE Photonics Technology Letters, 2019, 31, 1874-1877.	1.3	10
95	Fast Characterization of Dispersion and Dispersion Slope of Optical Fiber Links Using Spectral Interferometry With Frequency Combs. IEEE Photonics Technology Letters, 2010, 22, 155-157.	1.3	9
96	Efficient compressive and Bayesian characterization of biphoton frequency spectra. Optics Letters, 2020, 45, 2886.	1.7	9
97	Tunable radio frequency photonic filter based on intensity modulation of optical combs., 2010,,.		8
98	Focusing through scattering media. Nature Photonics, 2011, 5, 332-334.	15.6	8
99	Space–time focusing in a highly multimode fiber via optical pulse shaping. Optics Letters, 2018, 43, 4675.	1.7	8
100	Reply to Comment on "Generalized grating equation for virtually-imaged phased-array spectral dispersions― Applied Optics, 2012, 51, 8187.	0.9	7
101	Spatial coherent control. Nature Photonics, 2013, 7, 6-8.	15.6	7
102	Bell state analyzer for spectrally distinct photons. Optica, 2022, 9, 280.	4.8	7
103	Measurement of the lifetime of the 7sS1/22 state in atomic cesium using asynchronous gated detection. Physical Review A, 2018, 97, .	1.0	6
104	InP high power monolithically integrated widely tunable laser and SOA array for hybrid integration. Optics Express, 2021, 29, 3490.	1.7	6
105	Spectral compression using time-varying cavities. Optics Letters, 2020, 45, 5688.	1.7	6
106	Polarization diversity phase modulator for measuring frequency-bin entanglement of a biphoton frequency comb in a depolarized channel. Optics Letters, 2019, 44, 1674.	1.7	6
107	Rapid Wideband RF Subsampling and Disambiguation Using Dual Combs., 2019,,.		6
108	A Silicon Optical Transistor. , 2012, 2012, .		5

#	Article	IF	CITATIONS
109	Kerr Combs for Stimulated Brillouin Scattering Mitigation in Long-Haul Analog Optical Links. Journal of Lightwave Technology, 2019, 37, 5773-5779.	2.7	5
110	Measurement of the lifetimes of the 7pÂ2P3/2 and 7pÂ2P1/2 states of atomic cesium. Physical Review A, 2019, 100, .	1.0	5
111	W-Band Photonic Pulse Compression Radar With Dual Transmission Mode Beamforming. Journal of Lightwave Technology, 2021, 39, 1619-1628.	2.7	5
112	Experimental Test-Bed for Studying Multiple Antenna Beamforming over Ultra Wideband Channels up to 12 GHz. IEEE Wireless Communications Letters, 2012, 1, 520-523.	3. 2	4
113	Achieving the upper bound time-bandwidth product for radio-frequency arbitrary waveform generation. , 2013, , .		4
114	Agile frequency transformations for dense wavelength-multiplexed communications. Optics Express, 2020, 28, 20379.	1.7	4
115	PMD Tolerance Testing of a Commercial Communication System Using a Spectral Polarimeter. Journal of Lightwave Technology, 2006, 24, 4120-4126.	2.7	3
116	Characterizing pump line phase offset of a single-soliton Kerr comb by dual comb interferometry. Optics Letters, 2019, 44, 1460.	1.7	3
117	Hardware Correlation of Ultra-Wideband RF Signals Generated via Optical Pulse Shaping., 2007,,.		2
118	Photonically-Synthesized Waveforms to Combat Broadband Antenna Phase Distortions., 2007,,.		2
119	Multichannel Differential Group Delay Emulation and Compensation via a Phase Pulse Shaper. IEEE Photonics Technology Letters, 2007, 19, 1203-1205.	1.3	2
120	Wideband Deterministic All-Order Polarization-Mode Dispersion Generation via Pulse Shaping. IEEE Photonics Technology Letters, 2008, 20, 159-161.	1.3	2
121	Kerr Combs for Single-Span Long-Haul Analog Optical Links. , 2018, , .		2
122	Superchannel Engineering with Microresonator Combs., 2018,,.		2
123	Heterogeneously Integrated InP Widely Tunable Laser and SiN Microring Resonator for Integrated Comb Generation. , 2018, , .		2
124	Temporal modulation of a spectral compressor for efficient quantum storage. Optics Letters, 2022, 47, 1387.	1.7	2
125	Induced transient birefringence of a resonantly pumped molecular gas. Journal of Chemical Physics, 1996, 105, 6200-6215.	1.2	1
126	Quantitative Study of Optical Frequency Noise to Intensity Noise Conversion in Line-by-Line Pulse Shaping. IEEE Journal of Quantum Electronics, 2009, 45, 661-673.	1.0	1

#	Article	IF	CITATIONS
127	Highly flat and stable optical frequency comb generation using intensity and phase modulators employing quasi-quadratic phase modulation. , 2010 , , .		1
128	On-chip programmable radio-frequency waveform generation. , 2010, , .		1
129	Experimental investigation of UWB MISO beamforming. , 2013, , .		1
130	High-speed switching of biphoton delays through electro-optic pump frequency modulation. APL Photonics, 2017, 2, 011301.	3.0	1
131	Time-resolved detection of phase-coherent biphoton frequency combs from Si3N4 microring., 2021,,.		1
132	Experimental Characterization of Pump Power and Detuning in Microresonator Frequency Combs. , 2016, , .		1
133	Extremely Wide Bandwidth Microwave Photonic Phase Shifter for W-band Chirped Monopulse Radar. , 2018, , .		1
134	Stability of cnoidal wave frequency combs in microresonators. , 2018, , .		1
135	Ultra-Broadband Photonic Monopulse-Like Radar for Remote Sensing. , 2019, , .		1
136	Coherent photonic processing of microwave signals using spatial light modulators., 2006,,.		0
137	Mitigation of the dispersive phase response of radio-frequency antennae via optical pulse shaping. , 2006, , .		0
138	Coherent control of two-photon induced photocurrents in semiconductors with frequency-dependent response. , 2006, , .		0
139	Resolved frequency modes of a 1 GHz Ti:Sapphire laser for low repetition rate line-by-line pulse shaping. , 2008, , .		О
140	Photonically implemented ultrawideband RF matched filtering. , 2008, , .		0
141	Time-Multiplexed Photonically-Enabled Radio-Frequency Arbitrary Waveforms with 10-GHz Update Rate. , 2008, , .		0
142	Direct spectral phase retrieval of ultrashort pulses by double one-dimensional autocorrelation traces., 2008,,.		0
143	Coherent phonon excitation and manipulation in bismuth using temporally shaped ultrafast pulses. , 2008, , .		0
144	Compensation of broadband antenna dispersion using optical pulse shaping. Digest / IEEE Antennas and Propagation Society International Symposium, 2009, , .	0.0	0

#	Article	IF	CITATIONS
145	Performance of asynchronous time-spreading and spectrally-coded OCDMA systems. , 2009, , .		O
146	Flat-topped and Gaussian dual-shape optical frequency comb generator using only intensity and phase modulators. , $2010, , .$		0
147	Reconfigurable optical filter based on a phase-only liquid-crystal spatial light modulator. , 2011, , .		O
148	Experimental Study of UWB Impulse Response and Time Reversal Communication Technique up to 12 GHz. , $2011,\ldots$		0
149	Coherent frequency-to-time mapping revisited: Breaking the Fraunhofer limit to achieve ultrabroad radio-frequency waveforms. , $2011,\ldots$		0
150	Ultrabroad bandwidth signal generation based on frequency-to-time mapping in the temporal Fresnel regime. , $2011, \ldots$		0
151	Nonreciprocal transmission of 10 Gbps OOK data through an all-silicon passive optical diode. , 2012, , 703-704.		O
152	Comparative study of noise performance of microwave photonic filters based on coherent and incoherent multi-wavelength light sources. , 2012 , , .		0
153	High-fidelity microwave photonic filtering using optical frequency combs. , 2012, , .		0
154	Ultra high optical nonreciprocity using silicon microring resonators. , 2013, , .		0
155	An all-silicon optical diode transmitting 10 Gbps data. , 2013, , .		O
156	Phase compensation technique for ultra wideband channels. , 2013, , .		0
157	Nonreciprocal transmission through a silicon optical diode. , 2015, , .		0
158	Hot-Cavity Spectroscopy of Dark Pulse Kerr Combs in Microresonators. , 2019, , .		0
159	Switching Dynamics of Dark Solitons in Kerr Microresonators. , 2019, , .		O
160	All-Optical Processing with Dynamic Frequency Transformations. , 2019, , .		0
161	Effect of Pump Bandwidth on Measurements of Frequency-Bin Entanglement. , 2019, , .		0
162	Spectral Compression and Broadening using Time-Varying Cavities., 2021,,.		0

#	Article	IF	Citations
163	High-dimensional frequency-bin tomography with random measurements., 2021,,.		0
164	Electromagnetic Pulse Shaping and Applications. , 2007, , .		0
165	Compression of ultra-wideband microwave arbitrary waveforms via optical pulse shaping. , 2008, , .		O
166	40 dB Optical Nonreciprocal Transmission on a Silicon Chip. , 2012, , .		0
167	Bayesian machine learning of frequency-bin CNOT. , 2019, , .		0
168	Arbitrary single-qubit transformations on a quantum frequency processor., 2020,,.		0
169	Polarization diversity phase modulator for frequency-bin operations with hyperentangled biphoton frequency combs., 2020,,.		0
170	A Deterministic Method for Obtaining Large-Bandwidth Frequency Combs in Microresonators with Thermal Effects. , 2020, , .		0
171	All-optical frequency hopping and broadcasting in wavelength-multiplexed channels. , 2020, , .		O
172	Harnessing entanglement in polarization state and frequency-bin for quantum communication and networking. , 2020, , .		0
173	Quantum many-body simulations through quantum walks of high-dimensionally entangled photons. , 2020, , .		0
174	Remote State Preparation in a Reconfigurable Quantum Local Area Network. , 2021, , .		0
175	Optical Division of an Octave-Spanning Comb on an All-Silicon Nitride Platform. , 2021, , .		0
176	A Bell-state analyzer for photonic frequency. , 2020, , .		0
177	Bayesian reconstruction of biphoton frequency correlations. , 2020, , .		0
178	Randomized tomography of on-chip biphoton frequency combs. , 2021, , .		0