
Callum G Fraser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3033909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Replicate and repeat faecal immunochemical tests in symptomatic patients: A systematic review. Annals of Clinical Biochemistry, 2023, 60, 27-36.	1.6	3
2	Faecal haemoglobin concentrations in women and men diagnosed with colorectal cancer in a national screening programme. Journal of Medical Screening, 2022, 29, 26-31.	2.3	6
3	Faecal haemoglobin examinations have come of age, but further maturation seems desirable. Annals of Clinical Biochemistry, 2022, 59, 97-100.	1.6	2
4	Dr Per Hyltoft Petersen: an appreciation. Clinical Chemistry and Laboratory Medicine, 2022, 60, 299-300.	2.3	0
5	Faecal haemoglobin concentration in adenoma, before and after polypectomy, approaches the ideal tumour marker. Annals of Clinical Biochemistry, 2022, 59, 272-276.	1.6	2
6	One or two faecal immunochemical tests in an organised population-based colorectal cancer screening programme in Murcia (Spain). Journal of Medical Screening, 2022, , 096914132210949.	2.3	0
7	A comparison of the faecal haemoglobin concentrations and diagnostic accuracy in patients suspected with colorectal cancer and serious bowel disease as reported on four different faecal immunochemical test systems. Clinical Chemistry and Laboratory Medicine, 2022, 60, 1278-1286.	2.3	6
8	Comparison with first round findings of faecal haemoglobin concentrations and clinical outcomes in the second round of a biennial faecal immunochemical test based colorectal cancer screening programme. Journal of Medical Screening, 2022, 29, 249-254.	2.3	1
9	Strategies to minimise the current disadvantages experienced by women in faecal immunochemical test-based colorectal cancer screening. Clinical Chemistry and Laboratory Medicine, 2022, 60, 1496-1505.	2.3	7
10	Yield of colorectal cancer at colonoscopy according to faecal haemoglobin concentration in symptomatic patients referred from primary care. Colorectal Disease, 2021, 23, 1615-1621.	1.4	24
11	Transition to quantitative faecal immunochemical testing from guaiac faecal occult blood testing in a fully rolled-out population-based national bowel screening programme. Gut, 2021, 70, 106-113.	12.1	31
12	Faecal immunochemical tests in the COVID-19 pandemic; safety-netting of patients with symptoms and low faecal haemoglobin concentration – can a repeat test be used?. Annals of Clinical Biochemistry, 2021, 58, 163-165.	1.6	9
13	Analytical Performance Specifications for 25-Hydroxyvitamin D Examinations. Nutrients, 2021, 13, 431.	4.1	13
14	Faecal haemoglobin concentration thresholds for reassurance and urgent investigation for colorectal cancer based on a faecal immunochemical test in symptomatic patients in primary care. Annals of Clinical Biochemistry, 2021, 58, 211-219.	1.6	15
15	The Effect of the Variability in Fecal Immunochemical Test Sample Collection Technique on Clinical Performance. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 175-181.	2.5	5
16	Association between faecal occult bleeding and medicines prescribed for chronic disease: a data linkage study. Journal of Clinical Pathology, 2021, 74, 664-667.	2.0	4
17	Assuring the quality of examinations using faecal immunochemical tests for haemoglobin (FIT). Clinical Chemistry and Laboratory Medicine, 2021, 59, 245-247.	2.3	1
18	Faecal Haemoglobin Estimated by Faecal Immunochemical Tests—An Indicator of Systemic Inflammation with Real Clinical Potential. Diagnostics, 2021, 11, 2093.	2.6	13

#	Article	IF	CITATIONS
19	Randomized controlled trial: Flexible sigmoidoscopy as an adjunct to faecal occult blood testing in population screening. Journal of Medical Screening, 2020, 27, 59-67.	2.3	5
20	Variation in changes in the incidence of colorectal cancer by age and association with screening uptake: an observational study. BMJ Open, 2020, 10, e037925.	1.9	6
21	Measurement of faecal haemoglobin with a faecal immunochemical test can assist in defining which patients attending primary care with rectal bleeding require urgent referral. Annals of Clinical Biochemistry, 2020, 57, 325-327.	1.6	13
22	Faecal haemoglobin can define risk of colorectal neoplasia at surveillance colonoscopy in patients at increased risk of colorectal cancer. United European Gastroenterology Journal, 2020, 8, 559-566.	3.8	15
23	Biological variation: a still maturing aspect of laboratory medicine. Advances in Laboratory Medicine / Avances En Medicina De Laboratorio, 2020, 1, .	0.2	3
24	Faecal haemoglobin distributions by sex, age, deprivation and geographical region: consequences for colorectal cancer screening strategies. Clinical Chemistry and Laboratory Medicine, 2020, 58, 2073-2080.	2.3	20
25	Variación biológica: un aspecto de la medicina de laboratorio aún en desarrollo. Advances in Laboratory Medicine / Avances En Medicina De Laboratorio, 2020, 1, .	0.2	Ο
26	Use of fecal immunochemical testing in patients presenting in primary care with lower GI symptoms. Cmaj, 2020, 192, E377-E377.	2.0	0
27	Detection capability of quantitative faecal immunochemical tests for haemoglobin (FIT) and reporting of low faecal haemoglobin concentrations. Clinical Chemistry and Laboratory Medicine, 2019, 57, 611-616.	2.3	37
28	Impact of introducing a faecal immunochemical test (FIT) for haemoglobin into primary care on the outcome of patients with new bowel symptoms: a prospective cohort study. BMJ Open Gastroenterology, 2019, 6, e000293.	2.7	68
29	Faecal immunochemical tests for haemoglobin (FIT) in the assessment of patients with lower abdominal symptoms: current controversies. GastroenterologÃa Y HepatologÃa, 2019, 42, 263-270.	0.5	18
30	Changes in prevalence of faecal occult blood positivity over time. Journal of Medical Screening, 2019, 26, 191-196.	2.3	2
31	Low Sensitivity of Fecal Immunochemical Tests (FIT) for Detection of Sessile Serrated Adenomas/Polyps Confirmed Over Clinical Setting, Geography, and FIT System. Digestive Diseases and Sciences, 2019, 64, 3024-3026.	2.3	2
32	Faecal immunochemical tests for haemoglobin (FIT) in the assessment of patients with lower abdominal symptoms: current controversies. GastroenterologÃa Y HepatologÃa (English Edition), 2019, 42, 263-270.	0.1	1
33	Do other variables add value to assessment of the risk of colorectal disease using faecal immunochemical tests for haemoglobin?. Annals of Clinical Biochemistry, 2019, 56, 472-479.	1.6	12
34	A dynamic reference change value model applied to ongoing assessment of the steady state of a biomarker using more than two serial results. Annals of Clinical Biochemistry, 2019, 56, 283-294.	1.6	5
35	Appraisal of the faecal haemoglobin, age and sex test (FAST) score in assessment of patients with lower bowel symptoms: an observational study. BMC Gastroenterology, 2019, 19, 213.	2.0	18
36	Faecal immunochemical tests (FIT) in the assessment of patients presenting with lower bowel symptoms: Concepts and challenges. Journal of the Royal College of Surgeons of Edinburgh, 2018, 16, 302-308.	1.8	26

#	Article	IF	CITATIONS
37	Valid analytical performance specifications for combined analytical bias and imprecision for the use of common reference intervals. Annals of Clinical Biochemistry, 2018, 55, 612-615.	1.6	3
38	A comparative effectiveness trial of two faecal immunochemical tests for haemoglobin (FIT). Assessment of test performance and adherence in a single round of a population-based screening programme for colorectal cancer. Gut, 2018, 67, 485-496.	12.1	27
39	Uptake trends in the Scottish Bowel Screening Programme and the influences of age, sex, and deprivation. Journal of Medical Screening, 2018, 25, 24-31.	2.3	23
40	Application of NICE guideline NG12 to the initial assessment of patients with lower gastrointestinal symptoms: not FIT for purpose?. Annals of Clinical Biochemistry, 2018, 55, 69-76.	1.6	30
41	Can the performance of a quantitative FIT-based colorectal cancer screening programme be enhanced by lowering the threshold and increasing the interval?. Gut, 2018, 67, 993-994.	12.1	5
42	Faecal Immunochemical Tests (FIT) for Haemoglobin for Timely Assessment of Patients with Symptoms of Colorectal Disease. , 2018, , 39-66.		7
43	The importance of comparing quantitative faecal immunochemical tests (FIT) before selecting one for a population-based colorectal cancer screening programme. Journal of Laboratory and Precision Medicine, 2018, 3, 7-7.	1.1	3
44	Setting up a service for a faecal immunochemical test for haemoglobin (FIT): a review of considerations, challenges and constraints. Journal of Clinical Pathology, 2018, 71, 1041-1045.	2.0	24
45	Occult blood in faeces is associated with all-cause and non-colorectal cancer mortality. Gut, 2018, 67, 2116-2123.	12.1	40
46	Faecal haemoglobin concentration is related to detection of advanced colorectal neoplasia in the next screening round. Journal of Medical Screening, 2017, 24, 62-68.	2.3	17
47	The fecal hemoglobin concentration, age and sex test score: Development and external validation of a simple prediction tool for colorectal cancer detection in symptomatic patients. International Journal of Cancer, 2017, 140, 2201-2211.	5.1	61
48	Calculation of reference change values using more than two results is a difficult task. Annals of Clinical Biochemistry, 2017, 54, 412-413.	1.6	4
49	Population-based colorectal cancer screening programmes using a faecal immunochemical test: should faecal haemoglobin cut-offs differ by age and sex?. BMC Cancer, 2017, 17, 577.	2.6	39
50	Faecal immunochemical tests (FIT) can help to rule out colorectal cancer in patients presenting in primary care with lower abdominal symptoms: a systematic review conducted to inform new NICE DG30 diagnostic guidance. BMC Medicine, 2017, 15, 189.	5.5	86
51	Diagnostic work-up of patients presenting in primary care with lower abdominal symptoms: which faecal test and triage strategy should be used?. BMC Medicine, 2016, 14, 139.	5.5	7
52	A nicer approach to the use of †faecal occult blood tests' in assessment of the symptomatic. Annals of Clinical Biochemistry, 2016, 53, 5-6.	1.6	9
53	Analytical performance specifications for changes in assay bias (Δbias) for data with logarithmic distributions as assessed by effects on reference change values. Annals of Clinical Biochemistry, 2016, 53, 686-691.	1.6	2
54	Different percentages of false-positive results obtained using five methods for the calculation of reference change values based on simulated normal and In-normal distributions of data. Annals of Clinical Biochemistry, 2016, 53, 692-698.	1.6	8

#	Article	IF	CITATIONS
55	Interval cancers in a national colorectal cancer screening programme. United European Gastroenterology Journal, 2016, 4, 587-594.	3.8	15
56	Interval cancers using a quantitative faecal immunochemical test (FIT) for haemoglobin when colonoscopy capacity is limited. Journal of Medical Screening, 2016, 23, 130-134.	2.3	38
57	Use of a faecal immunochemical test for haemoglobin can aid in the investigation of patients with lower abdominal symptoms. Clinical Chemistry and Laboratory Medicine, 2016, 54, 595-602.	2.3	53
58	Assessment of faecal haemoglobin concentration distributions is vital for faecal immunochemical test (FIT)-based colorectal cancer screening programmes. Journal of Medical Screening, 2016, 23, 52-53.	2.3	5
59	Clinical utility of one versus two faecal immunochemical test samples in the detection of advanced colorectal neoplasia in symptomatic patients. Clinical Chemistry and Laboratory Medicine, 2016, 54, 125-32.	2.3	29
60	RE: A Proposal to Standardize Reporting Units for Fecal Immunochemical Tests for Hemoglobin. Journal of the National Cancer Institute, 2016, 108, djv312.	6.3	4
61	Faecal haemoglobin and faecal calprotectin as indicators of bowel disease in patients presenting to primary care with bowel symptoms. Gut, 2016, 65, 1463-1469.	12.1	141
62	Comparison of quantitative faecal immunochemical tests for haemoglobin (FIT) for asymptomatic population screening. Translational Cancer Research, 2016, 5, S916-S919.	1.0	7
63	Authors' reply to the letter to Editor (Annals of Clinical Biochemistry): â€~A simple approach to derive Z-score of reference change value involving more than two serial results'. Annals of Clinical Biochemistry, 2015, 52, 718-719.	1.6	0
64	How to improve the performances of Fecal Immunological Tests (FIT): Need for standardization of the sampling and pre-analytical phases and revision of the procedures for comparison of methods. International Journal of Biological Markers, 2015, 30, 127-131.	1.8	11
65	Impact of Preanalytical Factors on Fecal Immunochemical Tests: Need for New Strategies in Comparison of Methods. International Journal of Biological Markers, 2015, 30, 269-274.	1.8	10
66	Improving the reporting of evaluations of faecal immunochemical tests for haemoglobin. European Journal of Cancer Prevention, 2015, 24, 24-26.	1.3	32
67	Faecal haemoglobin concentrations do vary across geography as well as with age and sex: ramifications for colorectal cancer screening. Clinical Chemistry and Laboratory Medicine, 2015, 53, e235-7.	2.3	10
68	Confirmation of analytical performance characteristics required for the reference change value applied in patient monitoring. Scandinavian Journal of Clinical and Laboratory Investigation, 2015, 75, 628-630.	1.2	9
69	Biological variation database: structure and criteria used for generation and update. Clinical Chemistry and Laboratory Medicine, 2015, 53, 299-305.	2.3	89
70	Terms and Symbols Used in Studies on Biological Variation: The Need for Harmonization. Clinical Chemistry, 2015, 61, 438-439.	3.2	36
71	Biological variation: a still evolving facet of laboratory medicine. Annals of Clinical Biochemistry, 2015, 52, 189-190.	1.6	11
72	The 1999 Stockholm Consensus Conference on quality specifications in laboratory medicine. Clinical Chemistry and Laboratory Medicine, 2015, 53, 837-40.	2.3	28

#	Article	IF	CITATIONS
73	Defining analytical performance specifications: Consensus Statement from the 1st Strategic Conference of the European Federation of Clinical Chemistry and Laboratory Medicine. Clinical Chemistry and Laboratory Medicine, 2015, 53, 833-5.	2.3	398
74	Calculation of limits for significant bidirectional changes in two or more serial results of a biomarker based on a computer simulation model. Annals of Clinical Biochemistry, 2015, 52, 434-440.	1.6	23
75	Advances in Fecal Occult Blood Tests: The FIT Revolution. Digestive Diseases and Sciences, 2015, 60, 609-622.	2.3	155
76	Calculation of limits for significant unidirectional changes in two or more serial results of a biomarker based on a computer simulation model. Annals of Clinical Biochemistry, 2015, 52, 237-244.	1.6	24
77	Quality Indicators and Benchmarks for Guideline-Recommended Fecal Occult Blood Tests. , 2015, , 65-79.		1
78	Population Screening for Colorectal Cancer Means Getting FIT: The Past, Present, and Future of Colorectal Cancer Screening Using the Fecal Immunochemical Test for Hemoglobin (FIT). Gut and Liver, 2014, 8, 117-130.	2.9	148
79	A standard for Faecal Immunochemical TesTs for Haemoglobin Evaluation Reporting (FITTER). Annals of Clinical Biochemistry, 2014, 51, 301-302.	1.6	26
80	Faecal haemoglobin concentrations vary with sex and age, but data are not transferable across geography for colorectal cancer screening. Clinical Chemistry and Laboratory Medicine, 2014, 52, 1211-6.	2.3	62
81	Deprivation and faecal haemoglobin: implications for bowel cancer screening. Journal of Medical Screening, 2014, 21, 95-97.	2.3	29
82	Quantitation of Hemoglobin Improves Fecal Immunochemical Tests for Noninvasive Screening. Clinical Gastroenterology and Hepatology, 2013, 11, 839-840.	4.4	16
83	Impact of faecal haemoglobin concentration on colorectal cancer mortality and all-cause death. BMJ Open, 2013, 3, e003740.	1.9	34
84	Use of a faecal immunochemical test narrows current gaps in uptake for sex, age and deprivation in a bowel cancer screening programme. Journal of Medical Screening, 2013, 20, 80-85.	2.3	50
85	Faecal haemoglobin concentration is related to severity of colorectal neoplasia. Journal of Clinical Pathology, 2013, 66, 415-419.	2.0	77
86	Clinical outcomes using a faecal immunochemical test for haemoglobin as a firstâ€line test in a national programme constrained by colonoscopy capacity. United European Gastroenterology Journal, 2013, 1, 198-205.	3.8	66
87	Low faecal haemoglobin concentration potentially rules out significant colorectal disease. Colorectal Disease, 2013, 15, e151-9.	1.4	69
88	Making colorectal cancer screening FITTER for purpose with quantitative faecal immunochemical tests for haemoglobin (FIT). Clinical Chemistry and Laboratory Medicine, 2013, 51, 2065-7.	2.3	14
89	Making better use of differences in serial laboratory results. Annals of Clinical Biochemistry, 2012, 49, 1-3.	1.6	26
90	Guaiac based faecal occult blood testing for colorectal cancer screening: an obsolete strategy?. Gut, 2012. 61. 959-960.	12.1	25

#	Article	IF	CITATIONS
91	Faecal haemoglobin concentrations by gender and age: implications for population-based screening for colorectal cancer. Clinical Chemistry and Laboratory Medicine, 2012, 50, 935-40.	2.3	74
92	A Proposal to Standardize Reporting Units for Fecal Immunochemical Tests for Hemoglobin. Journal of the National Cancer Institute, 2012, 104, 810-814.	6.3	141
93	Reference change values. Clinical Chemistry and Laboratory Medicine, 2012, 50, 807-12.	2.3	172
94	Experience with a two-tier reflex gFOBT/FIT strategy in a national bowel screening programme. Journal of Medical Screening, 2012, 19, 8-13.	2.3	33
95	Reference change values may need some improvement but are invaluable tools in laboratory medicine. Clinical Chemistry and Laboratory Medicine, 2012, 50, .	2.3	15
96	Newer Fecal Tests: Opportunities for Professionals in Laboratory Medicine. Clinical Chemistry, 2012, 58, 963-965.	3.2	12
97	A future for faecal haemoglobin measurements in the medical laboratory. Annals of Clinical Biochemistry, 2012, 49, 518-526.	1.6	23
98	Comparing Fecal Immunochemical Tests: Improved Standardization Is Needed. Gastroenterology, 2012, 142, 422-424.	1.3	52
99	Impact of the UK colorectal cancer screening pilot studies on incidence, stage distribution and mortality trends. Cancer Epidemiology, 2012, 36, e232-e242.	1.9	50
100	Improved Monitoring of Differences in Serial Laboratory Results. Clinical Chemistry, 2011, 57, 1635-1637.	3.2	24
101	Screening for colorectal neoplasia with faecal tests. Lancet Oncology, The, 2011, 12, 516-517.	10.7	8
102	Acceptance quality checks for qualitative fecal immunochemical tests ensure screening program consistency. International Journal of Cancer, 2011, 128, 247-248.	5.1	7
103	Use of faecal markers in screening for colorectal neoplasia: a European group on tumor markers position paper. International Journal of Cancer, 2011, 128, 3-11.	5.1	83
104	Pre-notification Increases Uptake of Colorectal Cancer Screening in All Demographic Groups: A Randomized Controlled Trial. Journal of Medical Screening, 2011, 18, 24-29.	2.3	60
105	Reference change values for monitoring dehydration. Clinical Chemistry and Laboratory Medicine, 2011, 49, 1033-7.	2.3	42
106	Do new concepts for deriving permissible limits for analytical imprecision and bias have any advantages over existing consensus?. Clinical Chemistry and Laboratory Medicine, 2011, 49, 637-640.	2.3	12
107	Polymorphisms of the angiotensin converting enzyme gene in relation to intrauterine growth restriction. Acta Obstetricia Et Gynecologica Scandinavica, 2010, 89, 1197-1201.	2.8	2
108	Strategies to set global analytical quality specifications in laboratory medicine: 10Âyears on from the Stockholm consensus conference. Accreditation and Quality Assurance, 2010, 15, 323-330.	0.8	27

#	Article	IF	CITATIONS
109	Experience with a wipe guaiac-based faecal occult blood test as an alternative test in a bowel screening programme. Journal of Medical Screening, 2010, 17, 211-213.	2.3	0
110	Problems with the investigation of a problem with faecal occult blood tests. Annals of Clinical Biochemistry, 2010, 47, 391-392.	1.6	1
111	Polymorphisms of the angiotensin converting enzyme gene in early-onset and late-onset pre-eclampsia. Journal of Maternal-Fetal and Neonatal Medicine, 2010, 23, 874-879.	1.5	19
112	Predicting mortality using two renal function estimation methods in hospitalised stroke patients. International Journal of Cardiology, 2010, 139, 307-309.	1.7	3
113	Reference change values: the way forward in monitoring. Annals of Clinical Biochemistry, 2009, 46, 264-265.	1.6	55
114	Effect of delay in sampling on haemoglobin determined by faecal immunochemical tests. Annals of Clinical Biochemistry, 2008, 45, 604-605.	1.6	34
115	Faecal occult blood tests – eliminate, enhance or update?. Annals of Clinical Biochemistry, 2008, 45, 117-121.	1.6	27
116	Assay validation and biological variation of serum receptor for advanced glycation end-products. Annals of Clinical Biochemistry, 2008, 45, 518-519.	1.6	14
117	Automated immunochemical quantitation of haemoglobin in faeces collected on cards for screening for colorectal cancer. Gut, 2008, 57, 1256-1260.	12.1	19
118	Effect of Delay in Sampling on Fecal Immunochemical Tests. Point of Care, 2008, 7, 141.	0.4	0
119	Evaluation of a card collection-based faecal immunochemical test in screening for colorectal cancer using a two-tier reflex approach. Gut, 2007, 56, 1415-1418.	12.1	30
120	Immunochemical testing of individuals positive for guaiac faecal occult blood test in a screening programme for colorectal cancer: an observational study. Lancet Oncology, The, 2006, 7, 127-131.	10.7	71
121	Quality Specifications for Imprecision of B-Type Natriuretic Peptide Assays. Clinical Chemistry, 2005, 51, 1307-1309.	3.2	9
122	Inherent biological variation and reference values. Clinical Chemistry and Laboratory Medicine, 2004, 42, 758-64.	2.3	171
123	Test result variation and the quality of evidence-based clinical guidelines. Clinica Chimica Acta, 2004, 346, 19-24.	1.1	63
124	Serum angiotensin-converting enzyme assays should be ubiquitously available. Annals of Clinical Biochemistry, 2003, 40, 196-7.	1.6	0
125	Combination of Analytical Quality Specifications Based on Biological Within- and Between-Subject Variation. Annals of Clinical Biochemistry, 2002, 39, 543-550.	1.6	48
126	Grossly elevated serum angiotensin-converting enzyme activities are still suppressible with ACE inhibitor therapy. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2002, 3, 138-138.	1.7	0

#	Article	IF	CITATIONS
127	Does Renal Dysfunction Predict Mortality After Acute Stroke?. Stroke, 2002, 33, 1630-1635.	2.0	122
128	Objective criteria for partitioning Gaussian-distributed reference values into subgroups. Clinical Chemistry, 2002, 48, 338-52.	3.2	40
129	Optimal analytical performance for point of care testing. Clinica Chimica Acta, 2001, 307, 37-43.	1.1	23
130	Nonadherence with ACE Inhibitors Is Common and Can Be Detected in Clinical Practice by Routine Serum ACE Activity. Congestive Heart Failure, 2001, 7, 43-50.	2.0	16
131	Optimal Analytical Performance for POCT. Electronic Journal of the International Federation of Clinical Chemistry and Laboratory Medicine, 2001, 13, 3-8.	0.7	0
132	Analytical Performance Characteristics Should Be Judged against Objective Quality Specifications. Clinical Chemistry, 1999, 45, 321-323.	3.2	177
133	Quality specifications in laboratory medicine - current consensus views. Accreditation and Quality Assurance, 1999, 4, 410-413.	0.8	3
134	Nonadherence with angiotensin-converting enzyme inhibitor therapy. Journal of the American College of Cardiology, 1999, 34, 2072-2077.	2.8	32
135	Proposals for Setting Generally Applicable Quality Goals Solely Based on Biology. Annals of Clinical Biochemistry, 1997, 34, 8-12.	1.6	326
136	The influence of analytical bias on diagnostic misclassifications. Clinica Chimica Acta, 1997, 260, 189-206.	1.1	35
137	Acute effects of captopril on the renal actions of furosemide in patients with chronic heart failure. American Heart Journal, 1993, 126, 879-886.	2.7	32
138	Age-Related Changes in Laboratory Test Results. Drugs and Aging, 1993, 3, 246-257.	2.7	19
139	6.1.2.2 Quality Specifications for Haemoglobin A1c Assays in the Monitoring of Diabetes. Upsala Journal of Medical Sciences, 1993, 98, 335-338.	0.9	6
140	A Novel Approach to the Assessment of Drug Compliance in the Elderly. Gerontology, 1991, 37, 339-344.	2.8	2
141	Biologic Variation of Urinary Albumin: Consequences for Analysis, Specimen Collection, Interpretation of Results, and Screening Programs. American Journal of Kidney Diseases, 1989, 13, 35-37.	1.9	38
142	Biologic Variation of Common Hematologic Laboratory Quantities in the Elderly. American Journal of Clinical Pathology, 1989, 92, 465-470.	0.7	72
143	Clinically Useful Limits (CUL) Criteria Best Based on Within-Subject Biologic Variation. American Journal of Clinical Pathology, 1989, 92, 256-256.	0.7	2
144	The Author's Reply Analytic Goals Are Targets, Not Inflexible Criteria of Acceptability. American Journal of Clinical Pathology, 1988, 89, 703-705.	0.7	10

#	Article	IF	CITATIONS
145	Special Report: Desirable Standards for Hematology Tests: A Proposal. American Journal of Clinical Pathology, 1987, 88, 667-669.	0.7	23
146	The Author Replies as Follow: Attainment of Pre-Analytical Goals is Vital. Annals of Clinical Biochemistry, 1987, 24, 116-116.	1.6	3
147	Use of Appropriate Analytic Goals. American Journal of Clinical Pathology, 1983, 79, 759-760.	0.7	5
148	Components of Variance of Some Plasma Constituents in Patients with Myocardial Infarction. Annals of Clinical Biochemistry, 1982, 19, 431-434.	1.6	18
149	Urinalysis in an Australian teaching hospital. Medical Journal of Australia, 1982, 1, 300-301.	1.7	4
150	Serum Iron, Iron-binding Capacities, and Stress. American Journal of Clinical Pathology, 1981, 75, 442-442.	0.7	0
151	Goals for clinical biochemistry analytical imprecision: A graphic approach. Pathology, 1980, 12, 209-218.	0.6	6
152	The Clinical View of Turnaround Times for Stat Tests. American Journal of Clinical Pathology, 1979, 72, 885-885.	0.7	4
153	Biological variation: a rapidly evolving aspect of laboratory medicine. Journal of Laboratory and Precision Medicine, 0, 2, 35-35.	1.1	10
154	Faecal haemoglobin concentration and personalised assessment of the risk of colorectal neoplasia. Journal of Laboratory and Precision Medicine, 0, 2, 71-71.	1.1	4
155	Interpretation of faecal haemoglobin concentration data in colorectal cancer screening and in assessment of symptomatic patients. Journal of Laboratory and Precision Medicine, 0, 2, 96-96.	1.1	6
156	Population effects associated with colorectal cancer screening in Europe. Digestive Medicine Research, 0, .	0.2	2