
Leonid L Moroz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3033676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurotransmission and neuromodulation systems in the learning and memory network of <i>Octopus vulgaris</i> . Journal of Morphology, 2022, 283, 557-584.	1.2	4
2	Expanding of Life Strategies in Placozoa: Insights From Long-Term Culturing of Trichoplax and Hoilungia. Frontiers in Cell and Developmental Biology, 2022, 10, 823283.	3.7	10
3	Different phylogenomic methods support monophyly of enigmatic â€~Mesozoa' (Dicyemida +) Tj ETQq1 1 0.	784314 rg 2.6	gBŢ /Overlo <mark>ck</mark>
4	Neural versus alternative integrative systems: molecular insights into origins of neurotransmitters. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190762.	4.0	61
5	ATP signaling in the integrative neural center of Aplysia californica. Scientific Reports, 2021, 11, 5478.	3.3	4
6	Hidden cell diversity in Placozoa: ultrastructural insights from Hoilungia hongkongensis. Cell and Tissue Research, 2021, 385, 623-637.	2.9	22
7	3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science, 2021, 372, 984-989.	12.6	132
8	The American lobster genome reveals insights on longevity, neural, and immune adaptations. Science Advances, 2021, 7, .	10.3	27
9	Multiple Origins of Neurons From Secretory Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 669087.	3.7	30
10	Development of the nervous system in the early hatching larvae of the ctenophore <scp><i>Mnemiopsis leidyi</i></scp> . Journal of Morphology, 2021, 282, 1466-1477.	1.2	8
11	Selective Advantages of Synapses in Evolution. Frontiers in Cell and Developmental Biology, 2021, 9, 726563.	3.7	15
12	Evolution of glutamatergic signaling and synapses. Neuropharmacology, 2021, 199, 108740.	4.1	36
13	Profiling cellular diversity in sponges informs animal cell type and nervous system evolution. Science, 2021, 374, 717-723.	12.6	111
14	Comparative neuroanatomy of ctenophores: Neural and muscular systems in <i>Euplokamis dunlapae</i> and related species. Journal of Comparative Neurology, 2020, 528, 481-501.	1.6	23
15	Atlas of the neuromuscular system in the Trachymedusa <scp><i>Aglantha digitale</i></scp> : Insights from the advanced hydrozoan. Journal of Comparative Neurology, 2020, 528, 1231-1254.	1.6	7
16	Sodium action potentials in placozoa: Insights into behavioral integration and evolution of nerveless animals. Biochemical and Biophysical Research Communications, 2020, 532, 120-126.	2.1	22
17	The diversification and lineage-specific expansion of nitric oxide signaling in Placozoa: insights in the evolution of gaseous transmission. Scientific Reports, 2020, 10, 13020.	3.3	37
18	Mapping of neuropeptide Y expression in <scp><i>Octopus</i></scp> brains. Journal of Morphology, 2020, 281, 790-801.	1.2	8

#	Article	IF	CITATIONS
19	Microchemical identification of enantiomers in early-branching animals: Lineage-specific diversification in the usage of D-glutamate and D-aspartate. Biochemical and Biophysical Research Communications, 2020, 527, 947-952.	2.1	25
20	Glycine as a signaling molecule and chemoattractant in Trichoplax (Placozoa): insights into the early evolution of neurotransmitters. NeuroReport, 2020, 31, 490-497.	1.2	27
21	Dicyemida and Orthonectida: Two Stories of Body Plan Simplification. Frontiers in Genetics, 2019, 10, 443.	2.3	37
22	Neural system and receptor diversity in the ctenophore <scp><i>Beroe abyssicola</i></scp> . Journal of Comparative Neurology, 2019, 527, 1986-2008.	1.6	24
23	Neuromuscular organization of the Ctenophore <scp><i>Pleurobrachia bachei</i></scp> . Journal of Comparative Neurology, 2019, 527, 406-436.	1.6	32
24	Cover Image, Volume 527, Issue 2. Journal of Comparative Neurology, 2019, 527, C1-C1.	1.6	0
25	Intermediate-term memory in <i>Aplysia</i> involves neurotrophin signaling, transcription, and DNA methylation. Learning and Memory, 2018, 25, 620-628.	1.3	9
26	NeuroSystematics and Periodic System of Neurons: Model vs Reference Species at Single-Cell Resolution. ACS Chemical Neuroscience, 2018, 9, 1884-1903.	3.5	31
27	Phylogenomics of Lophotrochozoa with Consideration of Systematic Error. Systematic Biology, 2017, 66, syw079.	5.6	164
28	Ctenophore relationships and their placement as the sister group to all other animals. Nature Ecology and Evolution, 2017, 1, 1737-1746.	7.8	202
29	Development of neuromuscular organization in the ctenophore <i>Pleurobrachia bachei</i> . Journal of Comparative Neurology, 2016, 524, 136-151.	1.6	26
30	A sisterly dispute. Nature, 2016, 529, 286-287.	27.8	54
31	Independent origins of neurons and synapses: insights from ctenophores. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150041.	4.0	140
32	Miscues misplace sponges. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E946-7.	7.1	36
33	Hyperpolarization-activated, cyclic nucleotide-gated cation channels in <i>Aplysia</i> : Contribution to classical conditioning. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 16030-16035.	7.1	19
34	Convergent evolution of neural systems in ctenophores. Journal of Experimental Biology, 2015, 218, 598-611.	1.7	105
35	Biodiversity Meets Neuroscience: From the Sequencing Ship (Ship-Seq) to Deciphering Parallel Evolution of Neural Systems in Omic's Era. Integrative and Comparative Biology, 2015, 55, icv084.	2.0	10
36	DNA Methylation in Basal Metazoans: Insights from Ctenophores. Integrative and Comparative Biology, 2015, 55, 1096-1110.	2.0	38

#	Article	IF	CITATIONS
37	Parallel Evolution and Lineage-Specific Expansion of RNA Editing in Ctenophores. Integrative and Comparative Biology, 2015, 55, 1111-1120.	2.0	11
38	Error, signal, and the placement of Ctenophora sister to all other animals. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5773-5778.	7.1	279
39	Unbiased View of Synaptic and Neuronal Gene Complement in Ctenophores: Are There Pan-neuronal and Pan-synaptic Genes across Metazoa?. Integrative and Comparative Biology, 2015, 55, icv104.	2.0	42
40	Analysis of Gene Expression in Neurons and Synapses by Multi-color In Situ Hybridization. Neuromethods, 2015, , 293-317.	0.3	4
41	The genealogy of genealogy of neurons. Communicative and Integrative Biology, 2014, 7, e993269.	1.4	41
42	The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes. Journal of Heredity, 2014, 105, 1-18.	2.4	96
43	The ctenophore genome and the evolutionary origins of neural systems. Nature, 2014, 510, 109-114.	27.8	606
44	NSF workshop report: Discovering general principles of nervous system organization by comparing brain maps across species. Journal of Comparative Neurology, 2014, 522, 1445-1453.	1.6	35
45	Neuromodulatory Control of a Goal-Directed Decision. PLoS ONE, 2014, 9, e102240.	2.5	16
46	Single-Neuron Transcriptome and Methylome Sequencing for Epigenomic Analysis of Aging. Methods in Molecular Biology, 2013, 1048, 323-352.	0.9	49
47	Single-Cell Semiconductor Sequencing. Methods in Molecular Biology, 2013, 1048, 247-284.	0.9	16
48	A strategy to capture and characterize the synaptic transcriptome. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7464-7469.	7.1	49
49	PhyloTreePruner: A Phylogenetic Tree-Based Approach for selection of Orthologous sequences for phylogenomics. Evolutionary Bioinformatics, 2013, 9, EBO.S12813.	1.2	141
50	Regulation of Neuronal Excitability by Interaction of Fragile X Mental Retardation Protein with Slack Potassium Channels. Journal of Neuroscience, 2012, 32, 15318-15327.	3.6	104
51	Cephalopod genomics: A plan of strategies and organization. Standards in Genomic Sciences, 2012, 7, 175-188.	1.5	53
52	Rapid evolution of the compact and unusual mitochondrial genome in the ctenophore, Pleurobrachia bachei. Molecular Phylogenetics and Evolution, 2012, 63, 203-207.	2.7	44
53	Distinct Expression Patterns of Glycoprotein Hormone Subunits in the Lophotrochozoan Aplysia: Implications for the Evolution of Neuroendocrine Systems in Animals. Endocrinology, 2012, 153, 5440-5451.	2.8	24
54	Phylogenomics reveals deep molluscan relationships. Nature, 2011, 477, 452-456.	27.8	420

#	Article	IF	CITATIONS
55	Parallel evolution of Nitric Oxide signaling: Diversity of synthesis and memory pathways. Frontiers in Bioscience - Landmark, 2011, 16, 2008.	3.0	52
56	Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature, 2011, 470, 255-258.	27.8	400
57	Aplysia. Current Biology, 2011, 21, R60-R61.	3.9	68
58	Developmental transcriptome of <i>Aplysia californica'</i> . Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 113-134.	1.3	67
59	Serotonin and its metabolism in basal deuterostomes: insights from <i>Strongylocentrotus purpuratus</i> and <i>Xenoturbella bocki</i> . Journal of Experimental Biology, 2010, 213, 2647-2654.	1.7	10
60	Differential Evolutionary Rates of Neuronal Transcriptome inAplysia kurodaiandAplysia californicaas a Tool for Gene Mining. Journal of Neurogenetics, 2010, 24, 75-82.	1.4	6
61	Do different neurons age differently? Direct genome-wide analysis of aging in single identified cholinergic neurons. Frontiers in Aging Neuroscience, 2010, 2, .	3.4	65
62	Molluscan Memory of Injury: Evolutionary Insights into Chronic Pain and Neurological Disorders. Brain, Behavior and Evolution, 2009, 74, 206-218.	1.7	69
63	The origin of Metazoa: a transition from temporal to spatial cell differentiation. BioEssays, 2009, 31, 758-768.	2.5	125
64	Candidate chemoreceptor subfamilies differentially expressed in the chemosensory organs of the mollusc Aplysia. BMC Biology, 2009, 7, 28.	3.8	47
65	On the Independent Origins of Complex Brains and Neurons. Brain, Behavior and Evolution, 2009, 74, 177-190.	1.7	166
66	Analysis of nitric oxide yclic guanosine monophosphate signaling during metamorphosis of the nudibranch <i>Phestilla sibogae</i> Bergh (Gastropoda: Opisthobranchia). Evolution & Development, 2008, 10, 288-299.	2.0	34
67	Molluscan mobile elements similar to the vertebrate Recombination-Activating Genes. Biochemical and Biophysical Research Communications, 2008, 369, 818-823.	2.1	36
68	Transcriptome analysis and identification of regulators for long-term plasticity in <i>Aplysia kurodai</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18602-18607.	7.1	25
69	Role of Nitric Oxide in Classical Conditioning of Siphon Withdrawal in <i>Aplysia</i> . Journal of Neuroscience, 2007, 27, 10993-11002.	3.6	57
70	On the comparative biology of Nitric Oxide (NO) synthetic pathways: Parallel evolution of NO-mediated signaling. Advances in Experimental Biology, 2007, 1, 1-44.	0.1	13
71	Signaling mechanisms underlying metamorphic transitions in animals. Integrative and Comparative Biology, 2006, 46, 743-759.	2.0	103
72	Neuronal Transcriptome of Aplysia: Neuronal Compartments and Circuitry. Cell, 2006, 127, 1453-1467.	28.9	310

#	Article	IF	CITATIONS
73	Nitric Oxide Potentiates cAMP-Gated Cation Current in Feeding Neurons of Pleurobranchaea californica Independent of cAMP and cGMP Signaling Pathways. Journal of Neurophysiology, 2006, 95, 3219-3227.	1.8	16
74	Endogenous thyroid hormone synthesis in facultative planktotrophic larvae of the sand dollar Clypeaster rosaceus: implications for the evolutionary loss of larval feeding. Evolution & Development, 2006, 8, 568-579.	2.0	29
75	Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature, 2006, 444, 85-88.	27.8	528
76	Electroporation of neurons and growth cones in Aplysia californica. Journal of Neuroscience Methods, 2006, 151, 114-120.	2.5	23
77	Complete DNA sequence of the mitochondrial genome of the sea-slug, Aplysia californica: Conservation of the gene order in Euthyneura. Molecular Phylogenetics and Evolution, 2006, 38, 459-469.	2.7	64
78	Schistosoma mansoni: Use of a fluorescent indicator to detect nitric oxide and related species in living parasites. Experimental Parasitology, 2006, 113, 130-133.	1.2	19
79	Molecular characterization and expression of a two-pore domain potassium channel in the CNS of Aplysia californica. Brain Research, 2006, 1094, 47-56.	2.2	6
80	Localization of putative nitrergic neurons in peripheral chemosensory areas and the central nervous system ofAplysia californica. Journal of Comparative Neurology, 2006, 495, 10-20.	1.6	59
81	Thyroid hormone metabolism and peroxidase function in two non-chordate animals. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2006, 306B, 551-566.	1.3	69
82	Molecular Characterization of NMDA-Like Receptors inAplysiaandLymnaea:Relevance to Memory Mechanisms. Biological Bulletin, 2006, 210, 255-270.	1.8	61
83	The largest growth cones in the animal kingdom: an illustrated guide to the dynamics of Aplysia neuronal growth in cell culture. Integrative and Comparative Biology, 2006, 46, 847-870.	2.0	19
84	Two-color in situ hybridization in the CNS of Aplysia californica. Journal of Neuroscience Methods, 2005, 149, 15-25.	2.5	35
85	Calcium/calmodulin-dependent nitric oxide synthase activity in the CNS of Aplysia californica: Biochemical characterization and link to cGMP pathways. Journal of Inorganic Biochemistry, 2005, 99, 922-928.	3.5	27
86	Direct single cell determination of nitric oxide synthase related metabolites in identified nitrergic neurons. Journal of Inorganic Biochemistry, 2005, 99, 929-939.	3.5	52
87	Single cell glutamate analysis in Aplysia sensory neurons. Journal of Neuroscience Methods, 2005, 144, 73-77.	2.5	9
88	Cross-kingdom hormonal signaling: an insight from thyroid hormone functions in marine larvae. Journal of Experimental Biology, 2005, 208, 4355-4361.	1.7	98
89	Molecular beacons for bioanalytical applications. Analyst, The, 2005, 130, 1002.	3.5	69
90	Nitric oxide regulates swimming in the jellyfish <i>Aglantha digitale</i> . Journal of Comparative Neurology, 2004, 471, 26-36.	1.6	57

#	Article	IF	CITATIONS
91	Somatotopic organization and functional properties of mechanosensory neurons expressing sensorinâ€A mRNA in <i>Aplysia californica</i> . Journal of Comparative Neurology, 2004, 471, 219-240.	1.6	82
92	Monitoring real-time release of ATP from the molluscan central nervous system. Journal of Neuroscience Methods, 2004, 139, 145-152.	2.5	32
93	Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Research, 2004, 32, 37e-37.	14.5	375
94	Identification and distribution of a two-pore domain potassium channel in the CNS of Aplysia californica. Molecular Brain Research, 2004, 127, 27-38.	2.3	11
95	Interfering with Nitric Oxide Measurements. Journal of Biological Chemistry, 2002, 277, 48472-48478.	3.4	177
96	Ascorbic Acid Assays of Individual Neurons and Neuronal Tissues Using Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Analytical Chemistry, 2002, 74, 5614-5620.	6.5	76
97	High-resolution microanalysis of nitrite and nitrate in neuronal tissues by capillary electrophoresis with conductivity detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 774, 97-104.	2.3	39
98	Gaseous Transmission Across Time and Species. American Zoologist, 2001, 41, 304-320.	0.7	4
99	Gaseous Transmission Across Time and Species1. American Zoologist, 2001, 41, 304-320.	0.7	21
100	Distribution of NADPHâ€diaphorase reactivity and effects of nitric oxide on feeding and locomotory circuitry in the pteropod mollusc, <i>Clione limacina</i> . Journal of Comparative Neurology, 2000, 427, 274-284.	1.6	53
101	On the Origin and Early Evolution of Neuronal Nitric Oxide Signaling: A Comparative Analysis. , 2000, , 1-34.		3
102	Serotonin immunoreactivity in the central nervous system of the marine molluscsPleurobranchaea californica andTritonia diomedea. Journal of Comparative Neurology, 1998, 395, 466-480.	1.6	50
103	Single Neuron Analysis by Capillary Electrophoresis with Fluorescence Spectroscopy. Neuron, 1998, 20, 173-181.	8.1	103
104	Capillary Electrophoresis Analysis of Nitric Oxide Synthase Related Metabolites in Single Identified Neurons. Analytical Chemistry, 1998, 70, 2243-2247.	6.5	56
105	Non-Enzymatic Production of Nitric Oxide (NO) from NO Synthase Inhibitors. Biochemical and Biophysical Research Communications, 1998, 253, 571-576.	2.1	62
106	Serotonin-immunoreactivity in peripheral tissues of the opisthobranch molluscsPleurobranchaea californicaandTritonia diomedea. Journal of Comparative Neurology, 1997, 382, 176-188.	1.6	49
107	Nitrite and Nitrate Levels in Individual Molluscan Neurons: Singleâ€Cell Capillary Electrophoresis Analysis. Journal of Neurochemistry, 1997, 69, 110-115.	3.9	62
108	NADPH-diaphorase localization in the CNS and peripheral tissues of the predatory sea-slugPleurobranchaea californica. Journal of Comparative Neurology, 1996, 367, 607-622.	1.6	70

#	Article	IF	CITATIONS
109	Nitric Oxide Synthase Activity in the Molluscan CNS. Journal of Neurochemistry, 1996, 66, 873-876.	3.9	76
110	NADPHâ€diaphorase localization in the CNS and peripheral tissues of the predatory seaâ€slug Pleurobranchaea californica. Journal of Comparative Neurology, 1996, 367, 607-622.	1.6	2
111	Localization of nicotinamide adenine dinucleotide phosphateâ€diaphorase activity in electrosensory and electromotor systems of a gymnotiform teleost, <i>Apteronotus leptorhynchus</i> . Journal of Comparative Neurology, 1995, 356, 261-274.	1.6	47
112	Nitric oxide synthase in tiger salamander retina. Journal of Comparative Neurology, 1995, 361, 525-536.	1.6	42
113	Modulation of ion channels in rod photoreceptors by nitric oxide. Neuron, 1994, 13, 315-324.	8.1	193
114	Nitric oxide synthase-immunoreactive cells in the CNS and periphery of Lymnaea. NeuroReport, 1994, 5, 1277-1280.	1.2	92
115	Nitric oxide activates buccal motor patterns in Lymnaea stagnalis. NeuroReport, 1993, 4, 643-646.	1.2	139
116	NMDA-like receptors in the CNS of molluscs. NeuroReport, 1993, 4, 201-204.	1.2	42
117	Is nitric oxide (NO) produced by invertebrate neurones?. NeuroReport, 1993, 4, 279-282.	1.2	150
118	Mechanisms of behavioural selection in Lymnaea stagnalis. , 1992, , 52-72.		14