
Yuanqing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3033432/publications.pdf

Version: 2024-02-01

YHANOING WANG

#	Article	IF	CITATIONS
1	Oxygen Exchange on Vanadium Pentoxide. Journal of Physical Chemistry C, 2022, 126, 3443-3456.	3.1	8
2	A reduced imidazolium cation layer serves as the active site for electrochemical carbon dioxide reduction. Applied Catalysis B: Environmental, 2020, 264, 118495.	20.2	26
3	Towards Experimental Handbooks in Catalysis. Topics in Catalysis, 2020, 63, 1683-1699.	2.8	28
4	Fluctuating Storage of the Active Phase in a Mnâ€Na ₂ WO ₄ /SiO ₂ Catalyst for the Oxidative Coupling of Methane. Angewandte Chemie - International Edition, 2020, 59, 14921-14926.	13.8	50
5	Fluctuating Storage of the Active Phase in a Mnâ€Na ₂ WO ₄ /SiO ₂ Catalyst for the Oxidative Coupling of Methane. Angewandte Chemie, 2020, 132, 15031-15036.	2.0	19
6	Surface Conditions That Constrain Alkane Oxidation on Perovskites. ACS Catalysis, 2020, 10, 7007-7020.	11.2	37
7	Acid sites on silica-supported molybdenum oxides probed by ammonia adsorption: Experiment and theory. Molecular Catalysis, 2019, 478, 110580.	2.0	21
8	How to control selectivity in alkane oxidation?. Chemical Science, 2019, 10, 2429-2443.	7.4	28
9	Single-Site Vanadyl Species Isolated within Molybdenum Oxide Monolayers in Propane Oxidation. ACS Catalysis, 2019, 9, 4875-4886.	11.2	28
10	Oxygen Activation in Oxidative Coupling of Methane on Calcium Oxide. Journal of Physical Chemistry C, 2019, 123, 8018-8026.	3.1	16
11	Legitimate intermediates of oxygen evolution on iridium oxide revealed by in situ electrochemical evanescent wave spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 15199-15204.	2.8	40
12	NaHCO ₃ -enhanced hydrogen production from water with Fe and in situ highly efficient and autocatalytic NaHCO ₃ reduction into formic acid. Chemical Communications, 2016, 52, 3316-3319.	4.1	43
13	Kinetics and mechanism of reduction of CO2 by glycerol under alkaline hydrothermal conditions. International Journal of Hydrogen Energy, 2016, 41, 9128-9134.	7.1	9
14	A model study of hydrothermal reactions of trigonal dipyramidal Zn5 cluster with two water molecules. Computational and Theoretical Chemistry, 2015, 1070, 126-131.	2.5	3
15	Activation of CO ₂ by ionic liquid EMIM–BF ₄ in the electrochemical system: a theoretical study. Physical Chemistry Chemical Physics, 2015, 17, 23521-23531.	2.8	101
16	One-Pot Hydrothermal Conversion of Cellulose into Organic Acids with CuO as an Oxidant. Industrial & Engineering Chemistry Research, 2014, 53, 7939-7946.	3.7	35
17	New insights into highly efficient reduction of CO ₂ to formic acid by using zinc under mild hydrothermal conditions: a joint experimental and theoretical study. Physical Chemistry Chemical Physics, 2014, 16, 19836.	2.8	23
18	Universally improving effect of mixed electron donors on the CO2 fixing efficiency of non-photosynthetic microbial communities from marine environments. Journal of Environmental Sciences, 2014, 26, 1709-1716.	6.1	10

YUANQING WANG

#	Article	IF	CITATIONS
19	Hydrothermal Conversion of Cellulose into Organic Acids with a CuO Oxidant. Green Chemistry and Sustainable Technology, 2014, , 31-59.	0.7	5
20	Selective conversion of glucose into lactic acid and acetic acid with copper oxide under hydrothermal conditions. AICHE Journal, 2013, 59, 2096-2104.	3.6	61
21	Catalytic activity of Ni3S2 and effects of reactor wall in hydrogen production from water with hydrogen sulphide as a reducer under hydrothermal conditions. Applied Energy, 2013, 104, 306-309.	10.1	15
22	A novel method for producing hydrogen from water with Fe enhanced by HSâ^² under mild hydrothermal conditions. International Journal of Hydrogen Energy, 2013, 38, 760-768.	7.1	15
23	Effects of Metals and Ni3S2 on Reactions of Sulfur Species (HS–, S, and S2O32–) under Alkaline Hydrothermal Conditions. Industrial & Engineering Chemistry Research, 2013, 52, 5616-5625.	3.7	9
24	Direct and Highly Efficient Reduction of NiO into Ni with Cellulose under Hydrothermal Conditions. Industrial & Engineering Chemistry Research, 2012, 51, 7853-7858.	3.7	21
25	Effects of general zero-valent metals power of Co/W/Ni/Fe on hydrogen production with H 2 S as a reductant under hydrothermal conditions. International Journal of Hydrogen Energy, 2011, 36, 8878-8884.	7.1	10
26	Hydrogen Generation from Water with Hydrogen Sulfide as a Reducer at the Mild Conditions. , 2010, , .		1
27	Methanol Production By Reduction Of Formic Acid Over Cu Catalyst Under Hydrothermal Conditions. , 2010, , .		2