
Johannes Geiselmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3031934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiomics Study of Bacterial Growth Arrest in a Synthetic Biology Application. ACS Synthetic Biology, 2021, 10, 2910-2926.	3.8	4
2	Acetate Metabolism and the Inhibition of Bacterial Growth by Acetate. Journal of Bacteriology, 2019, 201, .	2.2	137
3	An ensemble of mathematical models showing diauxic growth behaviour. BMC Systems Biology, 2018, 12, 82.	3.0	16
4	Resource Reallocation in Bacteria by Reengineering the Gene Expression Machinery. Trends in Microbiology, 2017, 25, 480-493.	7.7	19
5	Mathematical modelling of microbes: metabolism, gene expression and growth. Journal of the Royal Society Interface, 2017, 14, 20170502.	3.4	46
6	Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies. PLoS Computational Biology, 2016, 12, e1004802.	3.2	84
7	Characterization of the Escherichia coli ÏfS core regulon by Chromatin Immunoprecipitation-sequencing (ChIP-seq) analysis. Scientific Reports, 2015, 5, 10469.	3.3	52
8	A synthetic growth switch based on controlled expression of RNA polymerase. Molecular Systems Biology, 2015, 11, 840.	7.2	76
9	Understanding carbon catabolite repression in Escherichia coli using quantitative models. Trends in Microbiology, 2015, 23, 99-109.	7.7	112
10	Inference of Quantitative Models of Bacterial Promoters from Time-Series Reporter Gene Data. PLoS Computational Biology, 2015, 11, e1004028.	3.2	38
11	Robust reconstruction of gene expression profiles from reporter gene data using linear inversion. Bioinformatics, 2015, 31, i71-i79.	4.1	17
12	Fluorescent Reporter Genes and the Analysis of Bacterial Regulatory Networks. Lecture Notes in Computer Science, 2015, , 27-50.	1.3	1
13	Anodic deposit from respiration metabolic pathway of Escherichia coli. Electrochimica Acta, 2014, 130, 200-205.	5.2	1
14	Repression of Flagellar Genes in Exponential Phase by CsgD and CpxR, Two Crucial Modulators of Escherichia coli Biofilm Formation. Journal of Bacteriology, 2014, 196, 707-715.	2.2	51
15	Systems Biology and Metabolic Engineering in Bacteria. Springer Series in Biophysics, 2014, , 351-367.	0.4	0
16	Expression dynamics of RpoS/Crl-dependent genes in Escherichia coli. Research in Microbiology, 2013, 164, 838-847.	2.1	19
17	Shared control of gene expression in bacteria by transcription factors and global physiology of the cell. Molecular Systems Biology, 2013, 9, 634.	7.2	127
18	A genome-wide screen for identifying all regulators of a target gene. Nucleic Acids Research, 2013, 41, e164-e164.	14.5	12

JOHANNES GEISELMANN

#	Article	IF	CITATIONS
19	Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in Escherichia coli. Journal of Theoretical Biology, 2012, 295, 100-115.	1.7	16
20	Genetic Network Analyzer: A Tool for the Qualitative Modeling and Simulation of Bacterial Regulatory Networks. Methods in Molecular Biology, 2012, 804, 439-462.	0.9	31
21	Importance of Metabolic Coupling for the Dynamics of Gene Expression Following a Diauxic Shift in E. coli. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 14851-14856.	0.4	Ο
22	Qualitative Analysis of Genetic Regulatory Networks in Bacteria. , 2011, , 111-130.		4
23	Experimental and computational validation of models of fluorescent and luminescent reporter genes in bacteria. BMC Systems Biology, 2010, 4, 55.	3.0	78
24	WellReader: a MATLAB program for the analysis of fluorescence and luminescence reporter gene data. Bioinformatics, 2010, 26, 1262-1263.	4.1	12
25	The Carbon Assimilation Network in Escherichia coli Is Densely Connected and Largely Sign-Determined by Directions of Metabolic Fluxes. PLoS Computational Biology, 2010, 6, e1000812.	3.2	46
26	Symbolic reachability analysis of genetic regulatory networks using discrete abstractions. Automatica, 2008, 44, 982-989.	5.0	46
27	Mutual Regulation of Crl and Fur in Escherichia coli W3110. Molecular and Cellular Proteomics, 2007, 6, 660-668.	3.8	10
28	The Crl-RpoS Regulon of Escherichia coli. Molecular and Cellular Proteomics, 2007, 6, 648-659.	3.8	55
29	Parallel Changes in Global Protein Profiles During Long-Term Experimental Evolution in Escherichia coli. Genetics, 2006, 173, 1851-1869.	2.9	98
30	Qualitative simulation of the carbon starvation response in Escherichia coli. BioSystems, 2006, 84, 124-152.	2.0	106
31	Crosstalk regulation among group 2-sigma factors in Synechocystis PCC6803. BMC Microbiology, 2005, 5, 18.	3.3	19
32	Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in Escherichia coli. Bioinformatics, 2005, 21, i19-i28.	4.1	141
33	Inferring the connectivity of a regulatory network from mRNA quantification in Synechocystis PCC6803. Nucleic Acids Research, 2005, 33, 3381-3389.	14.5	19
34	Long-Term Experimental Evolution in Escherichia coli. XII. DNA Topology as a Key Target of Selection. Genetics, 2005, 169, 523-532.	2.9	124
35	Control of Bacteriophage Mu Lysogenic Repression. Journal of Molecular Biology, 2005, 353, 186-195.	4.2	29
36	The glucosyl-1-phosphate transferase WchA (Cap8E) primes the capsular polysaccharide repeat unit biosynthesis of Streptococcus pneumoniae serotype 8. Biochemical and Biophysical Research Communications, 2005, 327, 857-865.	2.1	32

JOHANNES GEISELMANN

#	Article	IF	CITATIONS
37	Qualitative Analysis and Verification of Hybrid Models of Genetic Regulatory Networks: Nutritional Stress Response in Escherichia coli. Lecture Notes in Computer Science, 2005, , 134-150.	1.3	25
38	Regulation of Phycobilisome Biosynthesis and Degradation in Cyanobacteria. Books in Soils, Plants, and the Environment, 2005, , .	0.1	0
39	Crl, a Low Temperature-induced Protein in Escherichia coli That Binds Directly to the Stationary Phase Ïf Subunit of RNA Polymerase. Journal of Biological Chemistry, 2004, 279, 19540-19550.	3.4	119
40	Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid, 2004, 51, 246-255.	1.4	337
41	Qualitative simulation of the initiation of sporulation in. Bulletin of Mathematical Biology, 2004, 66, 261-299.	1.9	81
42	Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bulletin of Mathematical Biology, 2004, 66, 301-340.	1.9	309
43	Genetic Network Analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics, 2003, 19, 336-344.	4.1	240
44	Hybrid Modeling and Simulation of Genetic Regulatory Networks: A Qualitative Approach. Lecture Notes in Computer Science, 2003, , 267-282.	1.3	32
45	Qualitative modelling and simulation of developmental regulatory networks. , 2003, , 109-134.		5
46	The tRNA function of SsrA contributes to controlling repression of bacteriophage Mu prophage. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10220-10225.	7.1	39
47	Ultraviolet-Laser Footprinting. , 2001, 148, 161-173.		0
48	Maximal transcriptional activation by the IHF protein ofEscherichia colidepends on optimal DNA bending by the activator. Molecular Microbiology, 1998, 30, 431-441.	2.5	38
49	Participation of IHF and a distant UP element in the stimulation of the phage λ PLpromoter. Molecular Microbiology, 1998, 30, 443-451.	2.5	42
50	A quantitative UV laser footprinting analysis of the interaction of IHF with specific binding sites: re-evaluation of the effective concentration of IHF in the cell. Journal of Molecular Biology, 1998, 284, 949-961.	4.2	55
51	A simple polypyrimidine repeat acts as an artificial Rho-dependent terminator in vivo and in vitro. Nucleic Acids Research, 1998, 26, 4895-4900.	14.5	30
52	A sensitive reporter gene system using bacterial luciferase based on a series of plasmid cloning vectors compatible with derivatives of pBR322. Gene, 1997, 186, 197-200.	2.2	33
53	Structural kinetics of transcription activation at the malT promoter of Escherichia coli by UV laser footprinting. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9022-9027.	7.1	44
54	Influence of the Location of the cAMP Receptor Protein Binding Site on the Geometry of a Transcriptional Activation Complex inEscherichiacoliâ€. Biochemistry, 1996, 35, 15302-15312.	2.5	17

JOHANNES GEISELMANN

#	Article	IF	CITATIONS
55	In vivointeraction of theExcherichia coliintegration host factor with its specific binding sites. Nucleic Acids Research, 1995, 23, 2959-2965.	14.5	43
56	A physical model for the translocation and helicase activities of Escherichia coli transcription termination protein Rho Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 7754-7758.	7.1	100
57	Physical properties of the Escherichia coli transcription termination factor rho. 2. Quaternary structure of the rho hexamer. Biochemistry, 1992, 31, 121-132.	2.5	65
58	Physical properties of the Escherichia coli transcription termination factor rho. 1. Association states and geometry of the rho hexamer. Biochemistry, 1992, 31, 111-121.	2.5	85
59	Functional interactions of ligand cofactors with <i>Escherichia coli</i> transcription termination factor rho. I. Binding of ATP. Protein Science, 1992, 1, 850-860.	7.6	67
60	Functional interactions of ligand cofactors with <i>Escherichia coli</i> transcription termination factor rho. II. Binding of RNA. Protein Science, 1992, 1, 861-873.	7.6	43
61	[14] Kinetic studies on promoter-RNA polymerase complexes. Methods in Enzymology, 1991, 208, 236-258.	1.0	15
62	Protein-DNA cross-linking at thelacpromoter. Nucleic Acids Research, 1991, 19, 833-840.	14.5	69