
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3029789/publications.pdf Version: 2024-02-01

ΤΙΝΟΙΙΙΝ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Influence of the seasonal snow cover on the ground thermal regime: An overview. Reviews of Geophysics, 2005, 43, .	23.0	787
2	Changes in active layer thickness over the Qinghaiâ€ītibetan Plateau from 1995 to 2007. Journal of Geophysical Research, 2010, 115, .	3.3	266
3	Permafrost Stores a Globally Significant Amount of Mercury. Geophysical Research Letters, 2018, 45, 1463-1471.	4.0	245
4	Distribution of Permafrost in China: An Overview of Existing Permafrost Maps. Permafrost and Periglacial Processes, 2012, 23, 322-333.	3.4	210
5	A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water. Cold Regions Science and Technology, 2004, 38, 1-15.	3.5	126
6	The status and stability of permafrost carbon on the Tibetan Plateau. Earth-Science Reviews, 2020, 211, 103433.	9.1	111
7	Estimating 1992–2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence. Journal of Geophysical Research, 2012, 117, .	3.3	106
8	Numerical simulation of permafrost thermal regime and talik development under shallow thaw lakes on the Alaskan Arctic Coastal Plain. Journal of Geophysical Research, 2003, 108, .	3.3	97
9	Evaluation of ERAâ€40, NCEPâ€1, and NCEPâ€2 reanalysis air temperatures with groundâ€based measurements in China. Journal of Geophysical Research, 2008, 113, .	¹ 3.3	92
10	Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects. Science China Earth Sciences, 2019, 62, 1665-1701.	5.2	58
11	Characteristics and Changes in Air Temperature and Glacier's Response on the North Slope of Mt. Qomolangma (Mt. Everest). Arctic, Antarctic, and Alpine Research, 2011, 43, 147-160.	1.1	55
12	Response of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across china. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1984-2000.	2.8	54
13	Spatiotemporal variability of snow depth across the Eurasian continent fromÂ1966 toÂ2012. Cryosphere, 2018, 12, 227-245.	3.9	54
14	Thermal Characteristics and Recent Changes of Permafrost in the Upper Reaches of the Heihe River Basin, Western China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7935-7949.	3.3	53
15	Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1781-1791.	3.0	52
16	Soil organic carbon stabilization by iron in permafrost regions of the Qinghaiâ€Tibet Plateau. Geophysical Research Letters, 2016, 43, 10,286.	4.0	50
17	Thaw Depth Determines Dissolved Organic Carbon Concentration and Biodegradability on the Northern Qinghaiâ€Tibetan Plateau. Geophysical Research Letters, 2017, 44, 9389-9399.	4.0	45
18	Acceleration of thaw slump during 1997–2017 in the Qilian Mountains of the northern Qinghai-Tibetan plateau. Landslides, 2020, 17, 1051-1062.	5.4	44

#	Article	IF	CITATIONS
19	Permafrost zonation index map and statistics over the Qinghai–Tibet Plateau based on field evidence. Permafrost and Periglacial Processes, 2019, 30, 178-194.	3.4	43
20	Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Research, 2019, 161, 54-60.	11.3	39
21	Modelling Openâ€Talik Formation and Permafrost Lateral Thaw under a Thermokarst Lake, Beiluhe Basin, Qinghaiâ€Tibet Plateau. Permafrost and Periglacial Processes, 2012, 23, 312-321.	3.4	38
22	Changes in Freezing-Thawing Index and Soil Freeze Depth Over the Heihe River Basin, Western China. Arctic, Antarctic, and Alpine Research, 2016, 48, 161-176.	1.1	38
23	Evaluation of Collection-6 MODIS Land Surface Temperature Product Using Multi-Year Ground Measurements in an Arid Area of Northwest China. Remote Sensing, 2018, 10, 1852.	4.0	37
24	Modeling study of talik freeze-up and permafrost response under drained thaw lakes on the Alaskan Arctic Coastal Plain. Journal of Geophysical Research, 2004, 109, .	3.3	36
25	Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus. Geophysical Research Letters, 2017, 44, 9029-9038.	4.0	36
26	Permafrost degradation enhances the risk of mercury release on Qinghai-Tibetan Plateau. Science of the Total Environment, 2020, 708, 135127.	8.0	35
27	Active layer thickness as a function of soil water content. Environmental Research Letters, 2021, 16, 055028.	5.2	35
28	Estimating late-winter heat flow to the atmosphere from the lake-dominated Alaskan North Slope. Journal of Glaciology, 1999, 45, 315-324.	2.2	33
29	Observational study on the active layer freeze–thaw cycle in the upper reaches of the Heihe River of the north-eastern Qinghai-Tibet Plateau. Quaternary International, 2017, 440, 13-22.	1.5	31
30	Northern Hemisphere Greening in Association With Warming Permafrost. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005086.	3.0	29
31	Riverine dissolved organic carbon and its optical properties in a permafrost region of the Upper Heihe River basin in the Northern Tibetan Plateau. Science of the Total Environment, 2019, 686, 370-381.	8.0	26
32	Hydrothermal variations in soils resulting from the freezing and thawing processes in the active layer of an alpine grassland in the Qilian Mountains, northeastern Tibetan Plateau. Theoretical and Applied Climatology, 2019, 136, 929-941.	2.8	25
33	REDCAPP (v1.0): parameterizing valley inversions in air temperature data downscaled from reanalyses. Geoscientific Model Development, 2017, 10, 2905-2923.	3.6	24
34	Greenhouse gas released from the deep permafrost in the northern Qinghai-Tibetan Plateau. Scientific Reports, 2018, 8, 4205.	3.3	24
35	Spatial and temporal variations in air temperature and precipitation in the Chinese Himalayas during the 1971–2007. International Journal of Climatology, 2013, 33, 2622-2632.	3.5	23
36	Soil freeze depth variability across Eurasia during 1850–2100. Climatic Change, 2020, 158, 531-549.	3.6	23

#	Article	IF	CITATIONS
37	Spatiotemporal Variation of Snow Depth in the Northern Hemisphere from 1992 to 2016. Remote Sensing, 2020, 12, 2728.	4.0	23
38	Estimating late-winter heat flow to the atmosphere from the lake-dominated Alaskan North Slope. Journal of Glaciology, 1999, 45, 315-324.	2.2	22
39	Assessment of Temperature Changes on the Tibetan Plateau During 1980–2018. Earth and Space Science, 2021, 8, e2020EA001609.	2.6	22
40	Spatiotemporal variability of snow cover timing and duration over the Eurasian continent during 1966–2012. Science of the Total Environment, 2021, 750, 141670.	8.0	20
41	Particulate and gaseous pollutants in a petrochemical industrialized valley city, Western China during 2013–2016. Environmental Science and Pollution Research, 2018, 25, 15174-15190.	5.3	19
42	Impacts of landscape and climatic factors on snow cover in the Altai Mountains, China. Advances in Climate Change Research, 2021, 12, 95-107.	5.1	19
43	A synthesis dataset of permafrost-affected soil thermal conditions for Alaska, USA. Earth System Science Data, 2018, 10, 2311-2328.	9.9	18
44	A Holistic Assessment of 1979–2016 Global Cryospheric Extent. Earth's Future, 2021, 9, e2020EF001969.	6.3	13
45	Impacts of the active layer on runoff in an upland permafrost basin, northern Tibetan Plateau. PLoS ONE, 2018, 13, e0192591.	2.5	13
46	Snow Depth Trends from CMIP6 Models Conflict with Observational Evidence. Journal of Climate, 2022, 35, 1293-1307.	3.2	10
47	Relict Mountain Permafrost Area (Loess Plateau, China) Exhibits High Ecosystem Respiration Rates and Accelerating Rates in Response to Warming. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2580-2592.	3.0	8
48	Analysis of heavy metal-related indices in the Eboling permafrost on the Tibetan Plateau. Catena, 2021, 196, 104907.	5.0	8
49	Carbon and geochemical properties of cryosols on the North Slope of Alaska. Cold Regions Science and Technology, 2014, 100, 59-67.	3.5	7
50	Simulating heat source effect of a thermokarst lake in the first 540†years on the Alaskan Arctic using a simple lake expanding model. Cold Regions Science and Technology, 2019, 160, 176-183.	3.5	6
51	Climatology of the Timing and Duration of the Near-Surface Soil Freeze-Thaw Status Across China. Arctic, Antarctic, and Alpine Research, 2016, 48, 723-738.	1.1	5
52	Leaf and stem traits variation of <i>Stellera chamaejasme</i> Linn. with slope aspect in alpine steppe. Ecological Research, 2019, 34, 119-126.	1.5	5
53	Permafrost response to land use and land cover change in the last millennium across the Northern Hemisphere. Land Degradation and Development, 2020, 31, 1823-1836.	3.9	4
54	Multisize particulate matter and volatile organic compounds in arid and semiarid areas of Northwest China. Environmental Pollution, 2022, 300, 118875.	7.5	4

#	Article	IF	CITATIONS
55	The vertical distribution of soil organic carbon and nitrogen in a permafrostâ€affected wetland on the Qinghai–Tibet Plateau: Implications for Holocene development and environmental change. Permafrost and Periglacial Processes, 2022, 33, 286-297.	3.4	3
56	Recent climate changes in the northwestern Qaidam Basin inferred from geothermal gradients. Earth Science Informatics, 2020, 13, 261-270.	3.2	1
57	Revisiting climatic features in the Alaskan Arctic using newly collected data. Theoretical and Applied Climatology, 2021, 143, 1251-1259.	2.8	1
58	Dynamics, impacts, and future projections of Arctic rapid change. Advances in Climate Change Research, 2021, 12, 445-446.	5.1	1
59	Application of Tikhonov regularization to reconstruct past climate record from borehole temperature. Inverse Problems in Science and Engineering, 2021, 29, 3167-3189.	1.2	Ο