Charles J Heckman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3029552/publications.pdf

Version: 2024-02-01

167 papers 8,621 citations

43973 48 h-index 82 g-index

174 all docs

174 docs citations

times ranked

174

4284 citing authors

#	Article	IF	Citations
1	A computational approach for generating continuous estimates of motor unit discharge rates and visualizing population discharge characteristics. Journal of Neural Engineering, 2022, 19, 016007.	1.8	13
2	Analyzing Modeled Torque Profiles to Understand Scale-Dependent Active Muscle Responses in the Hip Joint. Biomimetics, 2022, 7, 17.	1.5	4
3	Motor Unit Discharge Patterns in Response to Focal Tendon Vibration of the Lower Limb in Cats and Humans. Frontiers in Integrative Neuroscience, 2022, 16, 836757.	1.0	2
4	Computational Models of Motor Pools. , 2022, , 911-912.		0
5	Slowly activating outward membrane currents generate input-output sub-harmonic cross frequency coupling in neurons. Journal of Theoretical Biology, 2021, 509, 110509.	0.8	3
6	Time Course of Alterations in Adult Spinal Motoneuron Properties in the SOD1(G93A) Mouse Model of ALS. ENeuro, 2021, 8, ENEURO.0378-20.2021.	0.9	18
7	The Involvement of CaV1.3 Channels in Prolonged Root Reflexes and Its Potential as a Therapeutic Target in Spinal Cord Injury. Frontiers in Neural Circuits, 2021, 15, 642111.	1.4	8
8	Estimates of persistent inward currents in tibialis anterior motor units during standing ramped contraction tasks in humans. Journal of Neurophysiology, 2021, 126, 264-274.	0.9	12
9	Estimates of persistent inward currents are reduced in upper limb motor units of older adults. Journal of Physiology, 2021, 599, 4865-4882.	1.3	38
10	Impact of parameter selection on estimates of motoneuron excitability using paired motor unit analysis. Journal of Neural Engineering, 2020, 17, 016063.	1.8	44
11	Nonlinear Input-Output Functions of Motoneurons. Physiology, 2020, 35, 31-39.	1.6	87
12	It takes a circuit to develop a mature motoneuron. Journal of Physiology, 2020, 598, 5301-5302.	1.3	0
13	Differences in estimated persistent inward currents between ankle flexors and extensors in humans. Journal of Neurophysiology, 2020, 124, 525-535.	0.9	23
14	Inability to increase the neural drive to muscle is associated with task failure during submaximal contractions. Journal of Neurophysiology, 2020, 124, 1110-1121.	0.9	24
15	Serotonin affects our perception of fatigue when performing submaximal efforts – but is it all in our heads?. Journal of Physiology, 2020, 598, 2533-2534.	1.3	0
16	Excessive Homeostatic Gain in Spinal Motoneurons in a Mouse Model of Amyotrophic Lateral Sclerosis. Scientific Reports, 2020, 10, 9049.	1.6	10
17	Motor Unit Discharge Variability Is Increased in Mild-To-Moderate Parkinson's Disease. Frontiers in Neurology, 2020, 11, 477.	1.1	10
18	Bursting interneurons in the deep dorsal horn develop increased excitability and sensitivity to serotonin after chronic spinal injury. Journal of Neurophysiology, 2020, 123, 1657-1670.	0.9	8

#	Article	IF	Citations
19	Reply from Jacob Graves McPherson, Albert Chen, Michael D. Ellis, Jun Yao, C. J. Heckman and Julius P. A. Dewald. Journal of Physiology, 2019, 597, 4413-4414.	1.3	O
20	Hyperexcitability precedes motoneuron loss in the <i>Smn^{2B/â^'}</i> mouse model of spinal muscular atrophy. Journal of Neurophysiology, 2019, 122, 1297-1311.	0.9	13
21	Exogenous neuromodulation of spinal neurons induces beta-band coherence during self-sustained discharge of hind limb motor unit populations. Journal of Applied Physiology, 2019, 127, 1034-1041.	1.2	6
22	Experimentally Modifiable Parameters and Their Relation to the Tonic Vibration Reflex in Chronic Hemiparetic Stroke., 2019, 2019, 2302-2306.		0
23	Changes in motor unit discharge patterns following strength training. Journal of Physiology, 2019, 597, 3509-3510.	1.3	5
24	Properties of Motor Units of Elbow and Ankle Muscles Decomposed Using High-Density Surface EMG. , 2019, 3874-3878.		14
25	Scaling of Motor Output, From Mouse to Humans. Physiology, 2019, 34, 5-13.	1.6	25
26	Locomotor-related V3 interneurons initiate and coordinate muscles spasms after spinal cord injury. Journal of Neurophysiology, 2019, 121, 1352-1367.	0.9	41
27	5-HT _{1D} receptors inhibit the monosynaptic stretch reflex by modulating C-fiber activity. Journal of Neurophysiology, 2019, 121, 1591-1608.	0.9	19
28	Cross-Frequency Coupling in Descending Motor Pathways: Theory and Simulation. Frontiers in Systems Neuroscience, 2019, 13, 86.	1.2	15
29	Progressive recruitment of contralesional corticoâ€reticulospinal pathways drives motor impairment post stroke. Journal of Physiology, 2018, 596, 1211-1225.	1.3	135
30	Robust and accurate decoding of motoneuron behaviour and prediction of the resulting force output. Journal of Physiology, 2018, 596, 2643-2659.	1.3	98
31	Dissecting the Functional Consequences of De Novo DNA Methylation Dynamics in Human Motor Neuron Differentiation and Physiology. Cell Stem Cell, 2018, 22, 559-574.e9.	5.2	53
32	Hypoexcitability precedes denervation in the large fast-contracting motor units in two unrelated mouse models of ALS. ELife, 2018, 7, .	2.8	111
33	Botulinum Toxin Conditioning Enhances Motor Axon Regeneration in Mouse and Human Preclinical Models. Neurorehabilitation and Neural Repair, 2018, 32, 735-745.	1.4	12
34	Neuromodulatory Inputs to Motoneurons Contribute to the Loss of Independent Joint Control in Chronic Moderate to Severe Hemiparetic Stroke. Frontiers in Neurology, 2018, 9, 470.	1.1	28
35	Altered Neuromodulatory Drive May Contribute to Exaggerated Tonic Vibration Reflexes in Chronic Hemiparetic Stroke. Frontiers in Human Neuroscience, 2018, 12, 131.	1.0	14
36	Acyloxyacyl hydrolase modulates pelvic pain severity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R353-R365.	0.9	13

#	Article	IF	CITATIONS
37	Resistance training with instability is more effective than resistance training in improving spinal inhibitory mechanisms in Parkinson's disease. Journal of Applied Physiology, 2017, 122, 1-10.	1.2	23
38	Synaptic control of the shape of the motoneuron pool input-output function. Journal of Neurophysiology, 2017, 117, 1171-1184.	0.9	45
39	Reflex wind-up in early chronic spinal injury: plasticity of motor outputs. Journal of Neurophysiology, 2017, 117, 2065-2074.	0.9	11
40	Chronic electromyograms in treadmill running SOD1 mice reveal early changes in muscle activation. Journal of Physiology, 2017, 595, 5387-5400.	1.3	12
41	PICs in motoneurons do not scale with the size of the animal: a possible mechanism for faster speed of muscle contraction in smaller species. Journal of Neurophysiology, 2017, 118, 93-102.	0.9	23
42	The potential for understanding the synaptic organization of human motor commands via the firing patterns of motoneurons. Journal of Neurophysiology, 2017, 118, 520-531.	0.9	61
43	Constitutive activity of 5-HT2C receptors is present after incomplete spinal cord injury but is not modified after chronic SSRI or baclofen treatment. Journal of Neurophysiology, 2017, 118, 2944-2952.	0.9	23
44	Hyperexcitability in synaptic and firing activities of spinal motoneurons in an adult mouse model of amyotrophic lateral sclerosis. Neuroscience, 2017, 362, 33-46.	1.1	30
45	The essential and downstream common proteins of amyotrophic lateral sclerosis: A protein-protein interaction network analysis. PLoS ONE, 2017, 12, e0172246.	1.1	14
46	Firing characteristics of deep dorsal horn neurons after acute spinal transection during administration of agonists for 5-HT _{1B/1D} and NMDA receptors. Journal of Neurophysiology, 2016, 116, 1644-1653.	0.9	9
47	Properties of the motor unit action potential shape in proximal and distal muscles of the upper limb in healthy and post-stroke individuals., 2016, 2016, 335-339.		6
48	Data for spatial characterization of AC signal propagation over primary neuron dendrites. Data in Brief, 2016, 6, 341-344.	0.5	0
49	Absence of <scp>UCHL</scp> 1 function leads to selective motor neuropathy. Annals of Clinical and Translational Neurology, 2016, 3, 331-345.	1.7	33
50	The transformation of synaptic to system plasticity in motor output from the sacral cord of the adult mouse. Journal of Neurophysiology, 2015, 114, 1987-2004.	0.9	8
51	Intrinsic excitability of human motoneurons in biceps brachii versus triceps brachii. Journal of Neurophysiology, 2015, 113, 3692-3699.	0.9	57
52	Comparison of dendritic calcium transients in juvenile wild type and SOD1G93A mouse lumbar motoneurons. Frontiers in Cellular Neuroscience, 2015, 9, 139.	1.8	10
53	The tight relationship between asymmetric signaling and locational excitability in motoneuron dendrites. Communicative and Integrative Biology, 2015, 8, e1110657.	0.6	2
54	Contribution of intrinsic motoneuron properties to discharge hysteresis and its estimation based on paired motor unit recordings: a simulation study. Journal of Neurophysiology, 2015, 114, 184-198.	0.9	50

#	Article	IF	Citations
55	Foundational dendritic processing that is independent of the cell type-specific structure in model primary neurons. Neuroscience Letters, 2015, 609, 203-209.	1.0	4
56	An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements. Journal of Neural Engineering, 2015, 12, 046025.	1.8	14
57	Asymmetry in Signal Propagation between the Soma and Dendrites Plays a Key Role in Determining Dendritic Excitability in Motoneurons. PLoS ONE, 2014, 9, e95454.	1.1	14
58	Gain control mechanisms in spinal motoneurons. Frontiers in Neural Circuits, 2014, 8, 81.	1.4	45
59	Neuromodulation impact on nonlinear firing behavior of a reduced model motoneuron with the active dendrite. Frontiers in Computational Neuroscience, 2014, 8, 110.	1.2	3
60	High-density surface EMG decomposition allows for recording of motor unit discharge from proximal and distal flexion synergy muscles simultaneously in individuals with stroke., 2014, 2014, 5340-4.		15
61	Effect of fluoxetine on disease progression in a mouse model of ALS. Journal of Neurophysiology, 2014, 111, 2164-2176.	0.9	19
62	Potential involvement of intracellular pH in a mouse model of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 151-153.	1.1	9
63	Disturbances of motor unit rate modulation are prevalent in muscles of spastic-paretic stroke survivors. Journal of Neurophysiology, 2014, 111, 2017-2028.	0.9	46
64	Soma size and Ca _v 1.3 channel expression in vulnerable and resistant motoneuron populations of the SOD1 ^{G93A} mouse model of ALS. Physiological Reports, 2014, 2, e12113.	0.7	15
65	Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis. Journal of Physiology, 2014, 592, 1687-1703.	1.3	128
66	Characterization of motor units in behaving adult mice shows a wide primary range. Journal of Neurophysiology, 2014, 112, 543-551.	0.9	16
67	Changes in motoneuron afterhyperpolarization duration in stroke survivors. Journal of Neurophysiology, 2014, 112, 1447-1456.	0.9	16
68	Serotonin Affects Movement Gain Control in the Spinal Cord. Journal of Neuroscience, 2014, 34, 12690-12700.	1.7	98
69	Reconfiguration of the Electrical Properties of Motoneurons to Match the Diverse Demands of Motor Behavior. Advances in Experimental Medicine and Biology, 2014, 826, 33-40.	0.8	6
70	Computational Models of Motor Pools. , 2014, , 1-2.		0
71	Design and evaluation of a chronic EMG multichannel detection system for long-term recordings of hindlimb muscles in behaving mice. Journal of Electromyography and Kinesiology, 2013, 23, 531-539.	0.7	32
72	Motoneuron Intrinsic Properties, but Not Their Receptive Fields, Recover in Chronic Spinal Injury. Journal of Neuroscience, 2013, 33, 18806-18813.	1.7	22

#	Article	IF	CITATIONS
73	eGFP Expression under (i>UCHL1 (i>Promoter Genetically Labels Corticospinal Motor Neurons and a Subpopulation of Degeneration-Resistant Spinal Motor Neurons in an ALS Mouse Model. Journal of Neuroscience, 2013, 33, 7890-7904.	1.7	69
74	Motor Neuron Rescue in Spinal Muscular Atrophy Mice Demonstrates That Sensory-Motor Defects Are a Consequence, Not a Cause, of Motor Neuron Dysfunction. Journal of Neuroscience, 2012, 32, 3818-3829.	1.7	168
75	Effect of prolonged riluzole exposure on cultured motoneurons in a mouse model of ALS. Journal of Neurophysiology, 2012, 107, 484-492.	0.9	30
76	Using spike-triggered averaging to characterize motor unit twitch vectors in the first dorsal interosseous., 2012, 2012, 3604-7.		1
77	Push–Pull Control of Motor Output. Journal of Neuroscience, 2012, 32, 4592-4599.	1.7	31
78	Simultaneous Intracellular Recording of a Lumbar Motoneuron and the Force Produced by its Motor Unit in the Adult Mouse In vivo . Journal of Visualized Experiments, 2012, , e4312.	0.2	11
79	Contribution of intrinsic properties and synaptic inputs to motoneuron discharge patterns: a simulation study. Journal of Neurophysiology, 2012, 107, 808-823.	0.9	76
80	NMDA induces persistent inward and outward currents that cause rhythmic bursting in adult rodent motoneurons. Journal of Neurophysiology, 2012, 108, 2991-2998.	0.9	24
81	Synchronous and asynchronous electrically evoked motor activities during wind-up stimulation are differentially modulated following an acute spinal transection. Journal of Neurophysiology, 2012, 108, 3322-3332.	0.9	5
82	Differential modulation of crossed and uncrossed reflex pathways by clonidine in adult cats following complete spinal cord injury. Journal of Physiology, 2012, 590, 973-989.	1.3	13
83	Motor Unit. , 2012, 2, 2629-2682.		317
84	O-Antigen Modulates Infection-Induced Pain States. PLoS ONE, 2012, 7, e41273.	1.1	43
85	Cutaneous inputs from the back abolish locomotor-like activity and reduce spastic-like activity in the adult cat following complete spinal cord injury. Experimental Neurology, 2012, 235, 588-598.	2.0	14
86	Stronger is not always better: Could a bodybuilding dietary supplement lead to ALS?. Experimental Neurology, 2011, 228, 5-8.	2.0	11
87	Motoneuron Excitability and Muscle Spasms Are Regulated by 5-HT _{2B} and 5-HT _{2C} Receptor Activity. Journal of Neurophysiology, 2011, 105, 731-748.	0.9	130
88	Altered postnatal maturation of electrical properties in spinal motoneurons in a mouse model of amyotrophic lateral sclerosis. Journal of Physiology, 2011, 589, 2245-2260.	1.3	120
89	Altered activation patterns by triceps surae stretch reflex pathways in acute and chronic spinal cord injury. Journal of Neurophysiology, 2011, 106, 1669-1678.	0.9	26
90	Extra Forces Evoked during Electrical Stimulation of the Muscle or Its Nerve Are Generated and Modulated by a Length-Dependent Intrinsic Property of Muscle in Humans and Cats. Journal of Neuroscience, 2011, 31, 5579-5588.	1.7	38

#	Article	IF	Citations
91	Adult Mouse Motor Units Develop Almost All of Their Force in the Subprimary Range: A New All-or-None Strategy for Force Recruitment?. Journal of Neuroscience, 2011, 31, 15188-15194.	1.7	31
92	Characterization of the tendon vibration reflex response in hemi-spastic stroke individuals., 2011, 2011, 2053-6.		5
93	Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nature Medicine, 2010, 16, 694-700.	15.2	353
94	Evidence from Computer Simulations for Alterations in the Membrane Biophysical Properties and Dendritic Processing of Synaptic Inputs in Mutant Superoxide Dismutase-1 Motoneurons. Journal of Neuroscience, 2010, 30, 5544-5558.	1.7	44
95	Interactions between focused synaptic inputs and diffuse neuromodulation in the spinal cord. Annals of the New York Academy of Sciences, 2010, 1198, 35-41.	1.8	24
96	Persistent inward currents in spinal motoneurons: Important for normal function but potentially harmful after spinal cord injury and in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2010, 121, 1669-1679.	0.7	70
97	Origins of Abnormal Excitability in Biceps Brachii Motoneurons of Spastic-Paretic Stroke Survivors. Journal of Neurophysiology, 2009, 102, 2026-2038.	0.9	101
98	Fast Kinetics, High-Frequency Oscillations, and Subprimary Firing Range in Adult Mouse Spinal Motoneurons. Journal of Neuroscience, 2009, 29, 11246-11256.	1.7	78
99	Progressive Changes in Synaptic Inputs to Motoneurons in Adult Sacral Spinal Cord of a Mouse Model of Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2009, 29, 15031-15038.	1.7	69
100	Motoneuron excitability: The importance of neuromodulatory inputs. Clinical Neurophysiology, 2009, 120, 2040-2054.	0.7	185
101	Active properties of motoneurone dendrites: diffuse descending neuromodulation, focused local inhibition. Journal of Physiology, 2008, 586, 1225-1231.	1.3	111
102	Movementâ€related receptive fields of spinal motoneurones with active dendrites. Journal of Physiology, 2008, 586, 1581-1593.	1.3	35
103	Persistent Inward Currents in Spinal Motoneurons and Their Influence on Human Motoneuron Firing Patterns. Neuroscientist, 2008, 14, 264-275.	2.6	224
104	Evidence for Increased Activation of Persistent Inward Currents in Individuals With Chronic Hemiparetic Stroke. Journal of Neurophysiology, 2008, 100, 3236-3243.	0.9	72
105	Summation of Excitatory and Inhibitory Synaptic Inputs by Motoneurons With Highly Active Dendrites. Journal of Neurophysiology, 2008, 99, 1643-1652.	0.9	35
106	Spinal Mechanisms for Control of Muscle Length and Force., 2008,, 443-478.		0
107	Expression of L-type calcium channel $\hat{l}\pm 1$ -1.2 and $\hat{l}\pm 1$ -1.3 subunits on rat sacral motoneurons following chronic spinal cord injury. Neuroscience, 2007, 145, 751-763.	1.1	22
108	Persistent inward currents in rat ventral horn neurones. Journal of Physiology, 2007, 580, 507-522.	1.3	66

#	Article	IF	Citations
109	Intrinsic electrical properties of spinal motoneurons vary with joint angle. Nature Neuroscience, 2007, 10, 363-369.	7.1	114
110	Essential role of the persistent sodium current in spike initiation during slowly rising inputs in mouse spinal neurones. Journal of Physiology, 2006, 574, 819-834.	1.3	125
111	In vitro sacral cord preparation and motoneuron recording from adult mice. Journal of Neuroscience Methods, 2006, 156, 31-36.	1.3	29
112	Measuring dendritic distribution of membrane proteins. Journal of Neuroscience Methods, 2006, 156, 257-266.	1.3	37
113	Effects of exercise training on α-motoneurons. Journal of Applied Physiology, 2006, 101, 1228-1236.	1.2	81
114	The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord. Journal of Neurocytology, 2005, 34, 369-385.	1.6	44
115	Increased persistent Na+current and its effect on excitability in motoneurones cultured from mutant SOD1 mice. Journal of Physiology, 2005, 563, 843-854.	1.3	200
116	Persistent inward currents in motoneuron dendrites: Implications for motor output. Muscle and Nerve, 2005, 31, 135-156.	1.0	347
117	Systematic variation in effects of serotonin and norepinephrine on repetitive firing properties of ventral horn neurons. Neuroscience, 2005, 134, 803-815.	1.1	21
118	Decerebrate mammalian preparations: unalleviated or fully alleviated pain? A review and opinion. Contemporary Topics in Laboratory Animal Science, 2005, 44, 34-6.	0.2	23
119	Hyperexcitability of Cultured Spinal Motoneurons From Presymptomatic ALS Mice. Journal of Neurophysiology, 2004, 91, 571-575.	0.9	168
120	Synaptic integration in motoneurons with hyper-excitable dendrites. Canadian Journal of Physiology and Pharmacology, 2004, 82, 549-555.	0.7	15
121	Physiology of the motor neuron and the motor unit. Handbook of Clinical Neurophysiology, 2004, 4, 119-147.	0.0	42
122	Changes in voluntary torque and electromyographic activity following oral baclofen. Muscle and Nerve, 2004, 30, 784-795.	1.0	11
123	Hill muscle model errors during movement are greatest within the physiologically relevant range of motor unit firing rates. Journal of Biomechanics, 2003, 36, 211-218.	0.9	91
124	Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior. Trends in Neurosciences, 2003, 26, 688-695.	4.2	210
125	Active Conductances in Motoneuron Dendrites Enhance Movement Capabilities. Exercise and Sport Sciences Reviews, 2003, 31, 96-101.	1.6	15
126	Summation of Forces From Multiple Motor Units in the Cat Soleus Muscle. Journal of Neurophysiology, 2003, 89, 738-744.	0.9	31

#	Article	IF	Citations
127	Influence of Active Dendritic Currents on Input-Output Processing in Spinal Motoneurons In Vivo. Journal of Neurophysiology, 2003, 89, 27-39.	0.9	78
128	Active Dendritic Integration of Inhibitory Synaptic Inputs In Vivo. Journal of Neurophysiology, 2003, 90, 3617-3624.	0.9	81
129	Relative Strengths and Distributions of Different Sources of Synaptic Input to the Motoneurone Pool. Advances in Experimental Medicine and Biology, 2002, 508, 207-212.	0.8	30
130	Spinal Interneurons That Receive Input From Muscle Afferents Are Differentially Modulated by Dorsolateral Descending Systems. Journal of Neurophysiology, 2001, 85, 1005-1008.	0.9	18
131	Essential Role of a Fast Persistent Inward Current in Action Potential Initiation and Control of Rhythmic Firing. Journal of Neurophysiology, 2001, 85, 472-475.	0.9	124
132	Whole Muscle Length-Tension Properties Vary With Recruitment and Rate Modulation in Areflexive Cat Soleus. Journal of Neurophysiology, 2001, 85, 1033-1038.	0.9	15
133	Recruitment of Cat Motoneurons in the Absence of Homonymous Afferent Feedback. Journal of Neurophysiology, 2001, 86, 616-628.	0.9	13
134	Adjustable Amplification of Synaptic Input in the Dendrites of Spinal Motoneurons <i>In Vivo</i> Journal of Neuroscience, 2000, 20, 6734-6740.	1.7	240
135	Paradoxical Effect of QX-314 on Persistent Inward Currents and Bistable Behavior in Spinal Motoneurons In Vivo. Journal of Neurophysiology, 1999, 82, 2518-2527.	0.9	65
136	Enhancement of Bistability in Spinal Motoneurons In Vivo by the Noradrenergic $\hat{l}\pm 1$ Agonist Methoxamine. Journal of Neurophysiology, 1999, 81, 2164-2174.	0.9	130
137	The role of voltage-sensitive dendritic conductances in generating bistable firing patterns in motoneurons. Journal of Physiology (Paris), 1999, 93, 97-100.	2.1	13
138	Chapter 4 Synaptic Integration in Bistable Motoneurons. Progress in Brain Research, 1999, 123, 49-56.	0.9	19
139	Bistability in Spinal Motoneurons In Vivo: Systematic Variations in Persistent Inward Currents. Journal of Neurophysiology, 1998, 80, 583-593.	0.9	289
140	Bistability in Spinal Motoneurons In Vivo: Systematic Variations in Rhythmic Firing Patterns. Journal of Neurophysiology, 1998, 80, 572-582.	0.9	226
141	Decorrelating Actions of Renshaw Interneurons on the Firing of Spinal Motoneurons Within a Motor Nucleus: A Simulation Study. Journal of Neurophysiology, 1998, 80, 309-323.	0.9	61
142	Active Dendritic Conductances Influence the Relations Between Synaptic Input and the Current-Voltage Relation of Adult Spinal Motoneurons., 1998,, 217-219.		0
143	Doublet potentiation during eccentric and concentric contractions of cat soleus muscle. Journal of Applied Physiology, 1997, 82, 1219-1228.	1.2	49
144	Force From Cat Soleus Muscle During Imposed Locomotor-Like Movements: Experimental Data Versus Hill-Type Model Predictions. Journal of Neurophysiology, 1997, 77, 1538-1552.	0.9	76

#	Article	IF	Citations
145	Restoration of extensor excitability in the acute spinal cat by the 5-HT2 agonist DOI. Journal of Neurophysiology, 1996, 75, 620-628.	0.9	67
146	Influence of voltage-sensitive dendritic conductances on bistable firing and effective synaptic current in cat spinal motoneurons in vivo. Journal of Neurophysiology, 1996, 76, 2107-2110.	0.9	143
147	Motor unit recruitment patterns during reflex compensation of muscle yield investigated by computer simulations. Biological Cybernetics, 1996, 75, 211-217.	0.6	2
148	Effect of reversible dorsal cold block on the persistence of inhibition generated by spinal reflexes. Experimental Brain Research, 1995, 107, 205-14.	0.7	3
149	5-HT1B/1D agonist CGS-12066B attenuates clasp knife reflex in the cat. Journal of Neurophysiology, 1995, 74, 453-456.	0.9	8
150	Computer simulations of the effects of different synaptic input systems on the steady-state input-output structure of the motoneuron pool. Journal of Neurophysiology, 1994, 71, 1727-1739.	0.9	57
151	Reduction in postsynaptic inhibition during maintained electrical stimulation of different nerves in the cat hindlimb. Journal of Neurophysiology, 1994, 71, 2281-2293.	0.9	19
152	Alterations in synaptic input to motoneurons during partial spinal cord injury. Medicine and Science in Sports and Exercise, 1994, 26, 1480???1490.	0.2	26
153	How different afferent inputs control motoneuron discharge and the output of the motoneuron pool. Current Opinion in Neurobiology, 1993, 3, 1028-1034.	2.0	48
154	Computer simulations of motoneuron firing rate modulation. Journal of Neurophysiology, 1993, 69, 1005-1008.	0.9	57
155	Computer simulations of the effects of different synaptic input systems on motor unit recruitment. Journal of Neurophysiology, 1993, 70, 1827-1840.	0.9	80
156	Effect of velocity and mechanical history on the forces of motor units in the cat medial gastrocnemius muscle. Journal of Neurophysiology, 1992, 68, 1503-1515.	0.9	29
157	Differences between steady-state and transient post-synaptic potentials elicited by stimulation of the sural nerve. Experimental Brain Research, 1992, 91, 167-70.	0.7	7
158	Computer simulation of the steady-state input-output function of the cat medial gastrocnemius motoneuron pool. Journal of Neurophysiology, 1991, 65, 952-967.	0.9	134
159	Analysis of la-inhibitory synaptic input to cat spinal motoneurons evoked by vibration of antagonist muscles. Journal of Neurophysiology, 1991, 66, 1888-1893.	0.9	44
160	Analysis of effective synaptic currents generated by homonymous la afferent fibers in motoneurons of the cat. Journal of Neurophysiology, 1988, 60, 1946-1966.	0.9	130
161	Tendon vibration-induced inhibition of human and cat triceps surae group I reflexes: Evidence of selective Ib afferent fiber activation. Experimental Neurology, 1986, 94, 333-347.	2.0	58
162	Can Ib axons be selectively activated by electrical stimuli in human subjects?. Experimental Neurology, 1984, 86, 576-582.	2.0	32

#	Article	IF	CITATIONS
163	Hill muscle model performance during natural activation and electrical stimulation., 0,,.		1
164	Three-dimensional moment and stiffness summation for muscles sharing a common tendon. , 0, , .		3
165	Mapping 3D sensory inputs onto spinal interneurons. , 0, , .		O
166	Muscle contributions to limb stiffness and stability in three dimensions. , 0, , .		О
167	Recording Intramuscular EMG Signals Using Surface Electrodes. , 0, , .		11