Iryna M Ethell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3029518/publications.pdf Version: 2024-02-01

IDVNA M FTHELL

#	Article	IF	CITATIONS
1	Functional consequences of postnatal interventions in a mouse model of Fragile X syndrome. Neurobiology of Disease, 2022, 162, 105577.	4.4	9
2	NMR-Guided Design of Potent and Selective EphA4 Agonistic Ligands. Journal of Medicinal Chemistry, 2021, 64, 11229-11246.	6.4	6
3	Urokinase plasminogen activator mediates changes in human astrocytes modeling fragile X syndrome. Glia, 2021, 69, 2947-2962.	4.9	12
4	Increased 2-arachidonoyl-sn-glycerol levels normalize cortical responses to sound and improve behaviors in Fmr1 KO mice. Journal of Neurodevelopmental Disorders, 2021, 13, 47.	3.1	7
5	Neural Correlates of Auditory Hypersensitivity in Fragile X Syndrome. Frontiers in Psychiatry, 2021, 12, 720752.	2.6	21
6	Cortical interneurons in autism. Nature Neuroscience, 2021, 24, 1648-1659.	14.8	68
7	Deletion of Fmr1 from Forebrain Excitatory Neurons Triggers Abnormal Cellular, EEG, and Behavioral Phenotypes in the Auditory Cortex of a Mouse Model of Fragile X Syndrome. Cerebral Cortex, 2020, 30, 969-988.	2.9	55
8	Beneficial effects of sound exposure on auditory cortex development in a mouse model of Fragile X Syndrome. Neurobiology of Disease, 2020, 134, 104622.	4.4	18
9	Minocycline Treatment Reverses Sound Evoked EEG Abnormalities in a Mouse Model of Fragile X Syndrome. Frontiers in Neuroscience, 2020, 14, 771.	2.8	16
10	Astrocytic Ephrin-B1 Controls Excitatory-Inhibitory Balance in Developing Hippocampus. Journal of Neuroscience, 2020, 40, 6854-6871.	3.6	22
11	Acute pharmacological inhibition of matrix metalloproteinaseâ€9 activity during development restores perineuronal net formation and normalizes auditory processing in <i>Fmr1</i> KO mice. Journal of Neurochemistry, 2020, 155, 538-558.	3.9	41
12	Multielectrode array analysis of EEG biomarkers in a mouse model of Fragile X Syndrome. Neurobiology of Disease, 2020, 138, 104794.	4.4	47
13	Abnormal development of auditory responses in the inferior colliculus of a mouse model of Fragile X Syndrome. Journal of Neurophysiology, 2020, 123, 2101-2121.	1.8	17
14	Astrocytic Ephrin-B1 Controls Synapse Formation in the Hippocampus During Learning and Memory. Frontiers in Synaptic Neuroscience, 2020, 12, 10.	2.5	23
15	Reduced perineuronal net expression in Fmr1 KO mice auditory cortex and amygdala is linked to impaired fear-associated memory. Neurobiology of Learning and Memory, 2019, 164, 107042.	1.9	25
16	Reversal of ultrasonic vocalization deficits in a mouse model of Fragile X Syndrome with minocycline treatment or genetic reduction of MMP-9. Behavioural Brain Research, 2019, 372, 112068.	2.2	22
17	Genetic reduction of MMP-9 in the Fmr1 KO mouse partially rescues prepulse inhibition of acoustic startle response. Brain Research, 2019, 1719, 24-29.	2.2	20
18	Developmental Changes in EEG Phenotypes in a Mouse Model of Fragile X Syndrome. Neuroscience, 2019, 398, 126-143.	2.3	47

Iryna M Ethell

#	Article	IF	CITATIONS
19	Translation-relevant EEG phenotypes in a mouse model of Fragile X Syndrome. Neurobiology of Disease, 2018, 115, 39-48.	4.4	102
20	Genetic Reduction of Matrix Metalloproteinase-9 Promotes Formation of Perineuronal Nets Around Parvalbumin-Expressing Interneurons and Normalizes Auditory Cortex Responses in Developing Fmr1 Knock-Out Mice. Cerebral Cortex, 2018, 28, 3951-3964.	2.9	110
21	Reusable Multielectrode Array Technique for Electroencephalography in Awake Freely Moving Mice. Frontiers in Integrative Neuroscience, 2018, 12, 53.	2.1	21
22	Sensory Processing Phenotypes in Fragile X Syndrome. ASN Neuro, 2018, 10, 175909141880109.	2.7	88
23	Diet-Induced Obesity Elicits Macrophage Infiltration and Reduction in Spine Density in the Hypothalami of Male but Not Female Mice. Frontiers in Immunology, 2018, 9, 1992.	4.8	58
24	Functional Consequences of Synapse Remodeling Following Astrocyte-Specific Regulation of Ephrin-B1 in the Adult Hippocampus. Journal of Neuroscience, 2018, 38, 5710-5726.	3.6	58
25	The Perineuronal â€~Safety' Net? Perineuronal Net Abnormalities in Neurological Disorders. Frontiers in Molecular Neuroscience, 2018, 11, 270.	2.9	125
26	Potent and Selective EphA4 Agonists for the Treatment of ALS. Cell Chemical Biology, 2017, 24, 293-305.	5.2	42
27	Automated spatio-temporal analysis of dendritic spines and related protein dynamics. PLoS ONE, 2017, 12, e0182958.	2.5	5
28	GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii. PLoS Pathogens, 2016, 12, e1005643.	4.7	138
29	Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury. ASN Neuro, 2016, 8, 175909141663022.	2.7	60
30	Spatio-temporal pattern recognition of dendritic spines and protein dynamics using live multichannel fluorescence microscopy. , 2016, , .		1
31	Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome. Neurobiology of Disease, 2016, 89, 126-135.	4.4	88
32	A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders. Frontiers in Cellular Neuroscience, 2015, 9, 280.	3.7	175
33	A Method to Regulate Cofilin Transport Using Optogenetics and Live Video Analysis. Computational Biology, 2015, , 265-279.	0.2	1
34	Genetic Removal of Matrix Metalloproteinase 9 Rescues the Symptoms of Fragile X Syndrome in a Mouse Model. Journal of Neuroscience, 2014, 34, 9867-9879.	3.6	139
35	Optogenetics to target actin-mediated synaptic loss in Alzheimer's. , 2013, , .		4
36	Cofilin under control of Î ² -arrestin-2 in NMDA-dependent dendritic spine plasticity, long-term depression (LTD), and learning. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E442-51.	7.1	117

Iryna M Ethell

#	Article	IF	CITATIONS
37	Looking forward to EphB signaling in synapses. Seminars in Cell and Developmental Biology, 2012, 23, 75-82.	5.0	43
38	Minocycline treatment reverses ultrasonic vocalization production deficit in a mouse model of Fragile X Syndrome. Brain Research, 2012, 1439, 7-14.	2.2	113
39	Casting a net on dendritic spines: The extracellular matrix and its receptors. Developmental Neurobiology, 2011, 71, 956-981.	3.0	64
40	Eph Receptors Are Involved in the Activity-Dependent Synaptic Wiring in the Mouse Cerebellar Cortex. PLoS ONE, 2011, 6, e19160.	2.5	14
41	Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurology, 2010, 10, 91.	1.8	197
42	Side Effects of Minocycline Treatment in Patients With Fragile X Syndrome and Exploration of Outcome Measures. American Journal on Intellectual and Developmental Disabilities, 2010, 115, 433-443.	1.6	90
43	The EphB4 receptor promotes the growth of melanoma cells expressing the ephrinâ€B2 ligand. Pigment Cell and Melanoma Research, 2010, 23, 684-687.	3.3	22
44	Focal Adhesion Kinase Acts Downstream of EphB Receptors to Maintain Mature Dendritic Spines by Regulating Cofilin Activity. Journal of Neuroscience, 2009, 29, 8129-8142.	3.6	139
45	Accelerators, Brakes, and Gears of Actin Dynamics in Dendritic Spines. The Open Neuroscience Journal, 2009, 3, 67-86.	0.8	36
46	Ephrin-B2-induced Cleavage of EphB2 Receptor Is Mediated by Matrix Metalloproteinases to Trigger Cell Repulsion. Journal of Biological Chemistry, 2008, 283, 28969-28979.	3.4	90
47	Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. Journal of Medical Genetics, 2008, 46, 94-102.	3.2	387
48	Matrix metalloproteinases in brain development and remodeling: Synaptic functions and targets. Journal of Neuroscience Research, 2007, 85, 2813-2823.	2.9	337
49	A Rose by Any Other Name? The Potential Consequences of Microglial Heterogeneity During CNS Health and Disease. Neurotherapeutics, 2007, 4, 571-579.	4.4	104
50	Matrix metalloproteinaseâ€7 disrupts dendritic spines in hippocampal neurons through NMDA receptor activation. Journal of Neurochemistry, 2006, 97, 44-56.	3.9	87
51	Integrins Control Dendritic Spine Plasticity in Hippocampal Neurons through NMDA Receptor and Ca ²⁺ /Calmodulin-Dependent Protein Kinase II-Mediated Actin Reorganization. Journal of Neuroscience, 2006, 26, 1813-1822.	3.6	180
52	The EphB4 Receptor-tyrosine Kinase Promotes the Migration of Melanoma Cells through Rho-mediated Actin Cytoskeleton Reorganization. Journal of Biological Chemistry, 2006, 281, 32574-32586.	3.4	81
53	Dendritic Plasticity in the Adult Neocortex. Neuroscientist, 2006, 12, 16-28.	3.5	48
54	EphB Receptors Regulate Dendritic Spine Morphogenesis through the Recruitment/Phosphorylation of Focal Adhesion Kinase and RhoA Activation. Journal of Biological Chemistry, 2006, 281, 1587-1598.	3.4	94

IRYNA M ETHELL

#	Article	IF	CITATIONS
55	GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking. Nature Neuroscience, 2005, 8, 906-915.	14.8	199
56	Molecular mechanisms of dendritic spine development and remodeling. Progress in Neurobiology, 2005, 75, 161-205.	5.7	307
57	Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. Journal of Cell Biology, 2003, 163, 1313-1326.	5.2	271
58	EphB/Syndecan-2 Signaling in Dendritic Spine Morphogenesis. Neuron, 2001, 31, 1001-1013.	8.1	291
59	Carbohydrate-protein interactions between HNK-1-reactive sulfoglucuronyl glycolipids and the proteoglycan lectin domain mediate neuronal cell adhesion and neurite outgrowth. Journal of Neurochemistry, 2001, 76, 413-424.	3.9	39
60	Synbindin, a Novel Syndecan-2–Binding Protein in Neuronal Dendritic Spines. Journal of Cell Biology, 2000, 151, 53-68.	5.2	118
61	Ultrastructural Identification of Storage Compartments and Localization of Activity-Dependent Secretion of Neurotrophin 6 in Hippocampal Neurons. Molecular and Cellular Neurosciences, 2000, 15, 215-234.	2.2	20
62	The Proteoglycan Lectin Domain Binds Sulfated Cell Surface Glycolipids and Promotes Cell Adhesion. Journal of Biological Chemistry, 1999, 274, 11431-11438.	3.4	106
63	Cell Surface Heparan Sulfate Proteoglycan Syndecan-2 Induces the Maturation of Dendritic Spines in Rat Hippocampal Neurons. Journal of Cell Biology, 1999, 144, 575-586.	5.2	201
64	Ca ²⁺ -Induced Apoptosis Through Calcineurin Dephosphorylation of BAD. Science, 1999, 284, 339-343.	12.6	1,073
65	NGF and Neurotrophin-3 Both Activate TrkA on Sympathetic Neurons but Differentially Regulate Survival and Neuritogenesis. Journal of Cell Biology, 1997, 136, 375-388.	5.2	163