Lisette P Waits

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3028765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Research, 1996, 24, 3189-3194.	14.5	1,193
2	Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Molecular Ecology, 2001, 10, 249-256.	3.9	1,101
3	Noninvasive genetic sampling: look before you leap. Trends in Ecology and Evolution, 1999, 14, 323-327.	8.7	768
4	Putting the â€~landscape' in landscape genetics. Heredity, 2007, 98, 128-142.	2.6	732
5	Critical considerations for the application of environmental <scp>DNA</scp> methods to detect aquatic species. Methods in Ecology and Evolution, 2016, 7, 1299-1307.	5.2	684
6	NONINVASIVE GENETIC SAMPLING TOOLS FOR WILDLIFE BIOLOGISTS: A REVIEW OF APPLICATIONS AND RECOMMENDATIONS FOR ACCURATE DATA COLLECTION. Journal of Wildlife Management, 2005, 69, 1419-1433.	1.8	540
7	Landscape genetics: where are we now?. Molecular Ecology, 2010, 19, 3496-3514.	3.9	480
8	Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 1123-1130.	1.4	444
9	Molecular Detection of Vertebrates in Stream Water: A Demonstration Using Rocky Mountain Tailed Frogs and Idaho Giant Salamanders. PLoS ONE, 2011, 6, e22746.	2.5	397
10	Factors influencing detection of <scp>eDNA</scp> from a streamâ€dwelling amphibian. Molecular Ecology Resources, 2014, 14, 109-116.	4.8	358
11	Applications of landscape genetics in conservation biology: concepts and challenges. Conservation Genetics, 2010, 11, 375-385.	1.5	356
12	Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Molecular Ecology, 1997, 6, 869-876.	3.9	342
13	Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Molecular Ecology, 1997, 6, 869-876.	3.9	333
14	An Empirical Evaluation of Genetic Distance Statistics Using Microsatellite Data From Bear (Ursidae) Populations. Genetics, 1997, 147, 1943-1957.	2.9	330
15	Environmental DNA as a new method for early detection of New Zealand mudsnails (<i>Potamopyrgus) Tj ETQq1</i>	10,7843 1.8	14.rgBT /Ove 320
16	Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biological Conservation, 2020, 248, 108654.	4.1	285
17	Assessing Allelic Dropout and Genotype Reliability Using Maximum Likelihood. Genetics, 2002, 160, 357-366.	2.9	285
18	Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography, 2009, 32, 818-830.	4.5	273

#	Article	IF	CITATIONS
19	A new method for estimating the size of small populations from genetic mark-recapture data. Molecular Ecology, 2005, 14, 1991-2005.	3.9	252
20	To what extent do microsatellite markers reflect genomeâ€wide genetic diversity in natural populations?. Molecular Ecology, 2008, 17, 3808-3817.	3.9	230
21	Variation in Genetic Diversity across the Range of North American Brown Bears. Conservation Biology, 1998, 12, 418-429.	4.7	220
22	Using environmental DNA methods to improve detectability in a hellbender (Cryptobranchus) Tj ETQq0 0 0 rgBT /	Overlock 1 4.1	.0 Tf 50 622
23	Nuclear DNA microsatellite analysis of genetic diversity and gene flow in the Scandinavian brown bear (Ursus arctos). Molecular Ecology, 2000, 9, 421-431.	3.9	200
24	Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife. Molecular Ecology, 2009, 18, 4151-4164.	3.9	192
25	Plucked hair samples as a source of DNA: reliability of dinucleotide microsatellite genotyping. Molecular Ecology, 1998, 7, 1237-1241.	3.9	185
26	Identifying future research needs in landscape genetics: where to from here?. Landscape Ecology, 2009, 24, 455-463.	4.2	167
27	Wolverine gene flow across a narrow climatic niche. Ecology, 2009, 90, 3222-3232.	3.2	166
28	Extra-pair paternity in the monogamous Alpine marmot revealed by nuclear DNA microsatellite analysis. Behavioral Ecology and Sociobiology, 1998, 43, 281-288.	1.4	154
29	Grizzly Bear Density in Glacier National Park, Montana. Journal of Wildlife Management, 2008, 72, 1693-1705.	1.8	154
30	Comparative landscape genetics of two pondâ€breeding amphibian species in a highly modified agricultural landscape. Molecular Ecology, 2010, 19, 3650-3663.	3.9	153
31	Mitochondrial DNA Phylogeography of the North American Brown Bear and Implications for Conservation. Conservation Biology, 1998, 12, 408-417.	4.7	147
32	The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus) Tj ETQq0 0 0 rgBT United States of America, 2003, 100, 4334-4339.	/Overlock 7.1	10 Tf 50 22 141
33	The power of genetic monitoring for studying demography, ecology and genetics of a reintroduced brown bear population. Molecular Ecology, 2010, 19, 3938-3951.	3.9	138
34	Assessing population structure and gene flow in Montana wolverines (Gulo gulo) using assignmentâ€based approaches. Molecular Ecology, 2003, 12, 2907-2918.	3.9	129
35	The impact of time and field conditions on brown bear (Ursus arctos) faecal DNA amplification. Conservation Genetics, 2007, 8, 1219-1224.	1.5	128
36	Genetic and genomic monitoring with minimally invasive sampling methods. Evolutionary Applications, 2018, 11, 1094-1119.	3.1	126

#	Article	IF	CITATIONS
37	A simulationâ€based evaluation of methods for inferring linear barriers to gene flow. Molecular Ecology Resources, 2012, 12, 822-833.	4.8	123
38	Widespread occurrence of a domestic dog mitochondrial DNA haplotype in southeastern US coyotes. Molecular Ecology, 2003, 12, 541-546.	3.9	120
39	MULTIPLE DATA SOURCES IMPROVE DNA-BASED MARK–RECAPTURE POPULATION ESTIMATES OF GRIZZLY BEARS. , 2008, 18, 577-589.		115
40	Using faecal DNA sampling and GIS to monitor hybridization between red wolves (Canis rufus) and coyotes (Canis latrans). Molecular Ecology, 2003, 12, 2175-2186.	3.9	110
41	Contributions of landscape genetics – approaches, insights, and future potential. Molecular Ecology, 2010, 19, 3489-3495.	3.9	110
42	Good genes sexual selection in nature. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16343-16345.	7.1	107
43	An evaluation of long-term preservation methods for brown bear (Ursus arctos) faecal DNA samples. Conservation Genetics, 2002, 3, 435-440.	1.5	105
44	A road map for molecular ecology. Molecular Ecology, 2013, 22, 2605-2626.	3.9	100
45	The influence of diet on faecal DNA amplification and sex identification in brown bears (Ursus arctos) Tj ETQq1	1 0,78431 3.9	4 rgBT /Overl
46	Efficient, Noninvasive Genetic Sampling for Monitoring Reintroduced Wolves. Journal of Wildlife Management, 2010, 74, 1050-1058.	1.8	96
47	The dilemma of female mate selection in the brown bear, a species with sexually selected infanticide. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 283-291.	2.6	95
48	Ancient DNA Analyses Reveal High Mitochondrial DNA Sequence Diversity and Parallel Morphological Evolution of Late Pleistocene Cave Bears. Molecular Biology and Evolution, 2002, 19, 1244-1250.	8.9	94
49	Nextâ€generation metrics for monitoring genetic erosion within populations of conservation concern. Evolutionary Applications, 2018, 11, 1066-1083.	3.1	93
50	Phylogeography and mitochondrial diversity of extirpated brown bear (Ursus arctos) populations in the contiguous United States and Mexico. Molecular Ecology, 2006, 15, 4477-4485.	3.9	81
51	Monitoring the effective population size of a brown bear (<i>Ursus arctos</i>) population using new singleâ€sample approaches. Molecular Ecology, 2012, 21, 862-875.	3.9	78
52	Comparing opportunistic and systematic sampling methods for nonâ€invasive genetic monitoring of a small translocated brown bear population. Journal of Applied Ecology, 2010, 47, 172-181.	4.0	75
53	Assessing Estimators of Snow Leopard Abundance. Journal of Wildlife Management, 2008, 72, 1826-1833.	1.8	74
54	Quantification and reduction of bias from sampling larvae to infer population and landscape genetic structure. Molecular Ecology Resources, 2010, 10, 304-313.	4.8	74

#	Article	lF	CITATIONS
55	Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Molecular Ecology, 1997, 6, 869-76.	3.9	74
56	Estimating gray wolf pack size and family relationships using noninvasive genetic sampling at rendezvous sites. Journal of Mammalogy, 2011, 92, 784-795.	1.3	73
57	A new individual-based spatial approach for identifying genetic discontinuities in natural populations. Molecular Ecology, 2007, 16, 2031-2043.	3.9	72
58	Use of naturally occurring mercury to determine the importance of cutthroat trout to Yellowstone grizzly bears. Canadian Journal of Zoology, 2004, 82, 493-501.	1.0	71
59	Impacts of sampling location within a faeces on DNA quality in two carnivore species. Molecular Ecology Resources, 2010, 10, 109-114.	4.8	71
60	Rapid Radiation Events in the Family Ursidae Indicated by Likelihood Phylogenetic Estimation from Multiple Fragments of mtDNA. Molecular Phylogenetics and Evolution, 1999, 13, 82-92.	2.7	68
61	Using a reference population yardstick to calibrate and compare genetic diversity reported in different studies: an example from the brown bear. Heredity, 2012, 109, 299-305.	2.6	65
62	Managing hybridization of a recovering endangered species: The red wolf Canis rufus as a case study. Environmental Epigenetics, 2015, 61, 191-205.	1.8	63
63	Predicting land use change: comparison of models based on landowner surveys and historical land cover trends. Landscape Ecology, 2008, 23, 195-210.	4.2	62
64	Pedigreeâ€based assignment tests for reversing coyote (Canis latrans) introgression into the wild red wolf (Canis rufus) population. Molecular Ecology, 2003, 12, 3287-3301.	3.9	61
65	Pollen dispersal and genetic structure of the tropical tree <i>Dipteryx panamensis</i> in a fragmented Costa Rican landscape. Molecular Ecology, 2008, 17, 2060-2073.	3.9	60
66	Capwire: a <scp>R</scp> package for estimating population census size from nonâ€invasive genetic sampling. Molecular Ecology Resources, 2013, 13, 154-157.	4.8	60
67	Factors influencing red wolf–coyote hybridization in eastern North Carolina, USA. Biological Conservation, 2015, 184, 108-116.	4.1	60
68	Feeding ecological knowledge: the underutilised power of faecal <scp>DNA</scp> approaches for carnivore diet analysis. Mammal Review, 2019, 49, 97-112.	4.8	60
69	A simulation test of the effectiveness of several methods for error-checking non-invasive genetic data. Animal Conservation, 2005, 8, 203-215.	2.9	57
70	An efficient method for screening faecal DNA genotypes and detecting new individuals and hybrids in the red wolf (Canis rufus) experimental population area. Conservation Genetics, 2006, 8, 123-131.	1.5	57
71	A long-term population monitoring approach for a wide-ranging carnivore: Noninvasive genetic sampling of gray wolf rendezvous sites in Idaho, USA. Journal of Wildlife Management, 2014, 78, 1040-1049.	1.8	57
72	The Endangered Species Act: Dollars and Sense?. BioScience, 2002, 52, 163.	4.9	56

#	Article	IF	CITATIONS
73	Bias in carnivore diet analysis resulting from misclassification of predator scats based on field identification. Wildlife Society Bulletin, 2016, 40, 669-677.	1.6	56
74	Assessing the prevalence of hybridization between sympatric Canis species surrounding the red wolf (Canis rufus) recovery area in North Carolina. Molecular Ecology, 2011, 20, 2142-2156.	3.9	54
75	Helper effects on pup lifetime fitness in the cooperatively breeding red wolf (<i>Canis rufus</i>). Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1381-1389.	2.6	54
76	Multiple breeding strategies in the swift fox, Vulpes velox. Animal Behaviour, 2006, 71, 1029-1038.	1.9	53
77	Molecular species identification for multiple carnivores. Conservation Genetics Resources, 2014, 6, 821-824.	0.8	52
78	A quantitative evaluation of two methods for preserving hair samples. Molecular Ecology Notes, 2003, 3, 163-166.	1.7	51
79	Detection of Predator Presence at Elk Mortality Sites Using mtDNA Analysis of Hair and Scat Samples. Wildlife Society Bulletin, 2006, 34, 815-820.	1.6	50
80	Spatiotemporal heterogeneity in prey abundance and vulnerability shapes the foraging tactics of an omnivore. Journal of Animal Ecology, 2018, 87, 874-887.	2.8	50
81	Evaluating the ability of Bayesian clustering methods to detect hybridization and introgression using an empirical red wolf data set. Molecular Ecology, 2013, 22, 74-86.	3.9	49
82	Microsatellite analysis of genetic variation among and within Alpine marmot populations in the French Alps. Molecular Ecology, 2001, 10, 41-52.	3.9	48
83	Genetic diversity and population structure of wolverine (Gulo gulo) populations at the southern edge of their current distribution in North America with implications for genetic viability. Conservation Genetics, 2006, 7, 197-211.	1.5	48
84	Noninvasive individual and species identification of jaguars (<i>Panthera onca</i>), pumas (<i>Puma) Tj ETQqO O microsatellites and faecal <scp>DNA</scp>. Molecular Ecology Resources, 2014, 14, 1171-1182.</i>	0 rgBT /O 4.8	verlock 10 Tf 48
85	Alaskan brown bears (<i>Ursus arctos</i>) aggregate and display fidelity to foraging neighborhoods while preying on Pacific salmon along small streams. Ecology and Evolution, 2018, 8, 9048-9061.	1.9	48
86	Identifying polymorphic microsatellite loci for Andean bear research. Ursus, 2009, 20, 102-108.	0.5	47
87	Reintroduction and Genetic Structure: Rocky Mountain Elk in Yellowstone and the Western States. Journal of Mammalogy, 2007, 88, 129-138.	1.3	46
88	Inbreeding and inbreeding depression in endangered red wolves (<i>Canis rufus</i>). Molecular Ecology, 2014, 23, 4241-4255.	3.9	46
89	Sampling technique affects detection of habitat factors influencing wild bee communities. Journal of Insect Conservation, 2017, 21, 703-714.	1.4	46
90	Genetic and spatial structure within a swift fox population. Journal of Animal Ecology, 2005, 74, 1173-1181.	2.8	45

#	Article	IF	CITATIONS
91	Locating hybrid individuals in the red wolf (Canis rufus) experimental population area using a spatially targeted sampling strategy and faecal DNA genotyping. Molecular Ecology, 2007, 16, 1823-1834.	3.9	45
92	Coupled social and ecological outcomes of agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions. Global Environmental Change, 2015, 32, 74-86.	7.8	45
93	A bioinformatic pipeline for identifying informative SNP panels for parentage assignment from <scp>RAD</scp> seq data. Molecular Ecology Resources, 2018, 18, 1263-1281.	4.8	45
94	Evaluating mixed samples as a source of error in non-invasive genetic studies using microsatellites. Molecular Ecology, 2004, 14, 195-201.	3.9	44
95	Using Detection Dogs and Rspf Models to Assess Habitat Suitability for Bears in Greater Yellowstone. Western North American Naturalist, 2015, 75, 396-405.	0.4	43
96	Monitoring coyote population dynamics with fecal DNA and spatial capture-recapture. Journal of Wildlife Management, 2016, 80, 824-836.	1.8	43
97	A multiâ€method approach for analyzing hierarchical genetic structures: a case study with cougars <i>Puma concolor</i> . Ecography, 2014, 37, 552-563.	4.5	42
98	Monitoring gray wolf populations using multiple survey methods. Journal of Wildlife Management, 2014, 78, 335-346.	1.8	42
99	Enhanced understanding of predator–prey relationships using molecular methods to identify predator species, individual and sex. Molecular Ecology Resources, 2014, 14, 100-108.	4.8	41
100	A Comparative Analysis of Genetic Diversity and Structure in Jaguars (Panthera onca), Pumas (Puma) Tj ETQq0 0 Linkage Zone. PLoS ONE, 2016, 11, e0151043.	0 rgBT /0 2.5	overlock 10 Tf 41
101	A Pedagogical Model for Team-Based, Problem-Focused Interdisciplinary Doctoral Education. BioScience, 2016, 66, 477-488.	4.9	41
102	An apparent hybrid wild bear from Cambodia. Ursus, 2008, 19, 85-86.	0.5	39
103	Direct fitness benefits of delayed dispersal in the cooperatively breeding red wolf (Canis rufus). Behavioral Ecology, 2011, 22, 199-205.	2.2	39
104	Ageâ€specific infectious period shapes dynamics of pneumonia in bighorn sheep. Ecology Letters, 2017, 20, 1325-1336.	6.4	39
105	Variation in Genetic Diversity across the Range of North American Brown Bears. Conservation Biology, 1998, 12, 418-429.	4.7	38
106	Balancing sample accumulation and <scp>DNA</scp> degradation rates to optimize noninvasive genetic sampling of sympatric carnivores. Molecular Ecology Resources, 2015, 15, 831-842.	4.8	38
107	A comparison of morphological and molecular diet analyses of predator scats. Journal of Mammalogy, 2016, 97, 112-120.	1.3	38
108	Evaluating DNA degradation rates in faecal pellets of the endangered pygmy rabbit. Molecular Ecology Resources, 2013, 13, 654-662.	4.8	37

#	Article	IF	CITATIONS
109	Estimating cougar densities in northeast Oregon using conservation detection dogs. Journal of Wildlife Management, 2014, 78, 1104-1114.	1.8	36
110	Recruitment in a social carnivore before and after harvest. Animal Conservation, 2015, 18, 415-423.	2.9	36
111	Evaluating noninvasive genetic sampling techniques to estimate large carnivore abundance. Molecular Ecology Resources, 2015, 15, 1133-1144.	4.8	35
112	Diets of sympatric red wolves and coyotes in northeastern North Carolina. Journal of Mammalogy, 2013, 94, 1141-1148.	1.3	34
113	Incorporating Genotyping Error Into Nonâ€Invasive DNAâ€Based Mark—Recapture Population Estimates. Journal of Wildlife Management, 2009, 73, 598-604.	1.8	33
114	Dispersal, gene flow, and population genetic structure in the pygmy rabbit (<i>Brachylagus) Tj ETQq0 0 0 rgBT /</i>	Overlock	10 Tf ₃ 50 542 ⁻
115	Efficient singleâ€survey estimation of carnivore density using fecal DNA and spatial captureâ€recapture: a bobcat case study. Population Ecology, 2018, 60, 197-209.	1.2	33
116	Non-invasive genetic sampling. Trends in Ecology and Evolution, 1998, 13, 26-27.	8.7	32
117	Implementing recovery of the red wolf-integrating research scientists and managers. Wildlife Society Bulletin, 2005, 33, 1145-1152.	1.6	32
118	Genetic diversity and population divergence in fragmented habitats: Conservation of Idaho ground squirrels. Conservation Genetics, 2005, 6, 759-774.	1.5	31
119	Evaluating the interaction of faecal pellet deposition rates and <scp>DNA</scp> degradation rates to optimize sampling design for <scp>DNA</scp> â€based mark–recapture analysis of Sonoran pronghorn. Molecular Ecology Resources, 2015, 15, 843-854.	4.8	31
120	The roles of habitat and intraguild predation by coyotes on the spatial dynamics of kit foxes. Ecosphere, 2017, 8, e01749.	2.2	31
121	The influence of landscape characteristics and home-range size on the quantification of landscape-genetics relationships. Landscape Ecology, 2012, 27, 253-266.	4.2	30
122	Evaluating the reliability of field identification and morphometric classifications for carnivore scats confirmed with genetic analysis. Wildlife Society Bulletin, 2015, 39, 593-602.	1.6	29
123	Describing a developing hybrid zone between red wolves and coyotes in eastern North Carolina, <scp>USA</scp> . Evolutionary Applications, 2016, 9, 791-804.	3.1	29
124	Changing numbers of spawning cutthroat trout in tributary streams of Yellowstone Lake and estimates of grizzly bears visiting streams from DNA. Ursus, 2005, 16, 167-180.	0.5	28
125	Estimating abundance of American black bears using DNA-based capture–mark–recapture models. Ursus, 2009, 20, 1-11.	0.5	28
126	Comparing morphological and molecular diet analyses and fecal DNA sampling protocols for a terrestrial carnivore. Wildlife Society Bulletin, 2017, 41, 362-369.	1.6	28

#	Article	IF	CITATIONS
127	Density and population size estimates for North Cascade grizzly bears using DNA hair-sampling techniques. Biological Conservation, 2004, 117, 417-428.	4.1	27
128	Using habitat models to determine conservation priorities for pond-breeding amphibians in a privately-owned landscape of northern Idaho, USA. Biological Conservation, 2009, 142, 1096-1104.	4.1	27
129	Predicted effects of residential development on a northern Idaho landscape under alternative growth management and land protection policies. Landscape and Urban Planning, 2010, 94, 255-263.	7.5	26
130	Developing an Interdisciplinary, Distributed Graduate Course for Twenty-First Century Scientists. BioScience, 2012, 62, 182-188.	4.9	26
131	Social and Demographic Effects of Anthropogenic Mortality: A Test of the Compensatory Mortality Hypothesis in the Red Wolf. PLoS ONE, 2011, 6, e20868.	2.5	26
132	Pack social dynamics and inbreeding avoidance in the cooperatively breeding red wolf. Behavioral Ecology, 2012, 23, 1186-1194.	2.2	25
133	Assessment of genetic diversity, population structure, and gene flow of tigers (Panthera tigris tigris) across Nepal's Terai Arc Landscape. PLoS ONE, 2018, 13, e0193495.	2.5	25
134	Status of the Gobi bear in Mongolia as determined by noninvasive genetic methods. Ursus, 2009, 20, 30-38.	0.5	24
135	Inbreeding depression in pronghorn (Antilocapra americana) fawns. Molecular Ecology, 2011, 20, 4889-4898.	3.9	24
136	Agricultural intensification alters bat assemblage composition and abundance in a dynamic Neotropical landscape. Biotropica, 2016, 48, 667-676.	1.6	24
137	Advances in Using Non-invasive, Archival, and Environmental Samples for Population Genomic Studies. Population Genomics, 2018, , 63-99.	0.5	24
138	Batrachochytrium dendrobatidis infection dynamics in the Columbia spotted frog Rana luteiventris in north Idaho, USA. Diseases of Aquatic Organisms, 2010, 92, 223-230.	1.0	24
139	Molted feathers from clay licks in Peru provide DNA for three large macaws (<i>Ara) Tj ETQq1 1 0.784314 rgBT /C 183-192.</i>	Overlock 1 0.5	0 Tf 50 267 23
140	Optimizing collection methods for noninvasive genetic sampling of neotropical felids. Wildlife Society Bulletin, 2015, 39, 403-412.	1.6	23
141	Applying genomics in assisted migration under climate change: Framework, empirical applications, and case studies. Evolutionary Applications, 2022, 15, 3-21.	3.1	23
142	Genetic diversity in a reintroduced swift fox population. Conservation Genetics, 2013, 14, 93-102.	1.5	22
143	Estimating Sonoran pronghorn abundance and survival with fecal DNA and capture–recapture methods. Conservation Biology, 2016, 30, 1102-1111.	4.7	22
144	Comment on "Whole-genome sequence analysis shows two endemic species of North American wolf are admixtures of the coyote and gray wolf― Science Advances, 2017, 3, e1602250.	10.3	22

#	Article	IF	CITATIONS
145	Highly efficient multiplex PCR of noninvasive DNA does not require preâ€amplification. Molecular Ecology Resources, 2010, 10, 495-501.	4.8	21
146	Crossâ€species amplification and optimization of microsatellite markers for use in six Neotropical parrots. Molecular Ecology Resources, 2008, 8, 835-839.	4.8	20
147	ConGenR: rapid determination of consensus genotypes and estimates of genotyping errors from replicated genetic samples. Conservation Genetics Resources, 2015, 7, 841-843.	0.8	20
148	Conventional and genetic measures of seed dispersal for Dipteryx panamensis (Fabaceae) in continuous and fragmented Costa Rican rain forest. Journal of Tropical Ecology, 2007, 23, 635-642.	1.1	19
149	Comparative landscape genetics of two frugivorous bats in a biological corridor undergoing agricultural intensification. Molecular Ecology, 2017, 26, 4603-4617.	3.9	19
150	Genetic monitoring of an endangered species recovery: demographic and genetic trends for reintroduced pygmy rabbits (Brachylagus idahoensis). Journal of Mammalogy, 2017, 98, 350-364.	1.3	19
151	Rapid species identification of pygmy rabbits <i>(Brachylagus idahoensis)</i> from faecal pellet DNA. Molecular Ecology Resources, 2011, 11, 808-812.	4.8	18
152	Genetic assessment of paternity and relatedness in a managed population of cougars. Journal of Wildlife Management, 2011, 75, 378-384.	1.8	18
153	A method for estimating population sex ratio for sageâ€grouse using noninvasive genetic samples. Molecular Ecology Resources, 2013, 13, 393-402.	4.8	18
154	Harvest and group effects on pup survival in a cooperative breeder. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170580.	2.6	18
155	Substantial red wolf genetic ancestry persists in wild canids of southwestern Louisiana. Conservation Letters, 2019, 12, e12621.	5.7	18
156	Taxonomic status and conservation strategy of the endangered red wolf: a response to Kyle etÂal. (2006). Conservation Genetics, 2007, 8, 1483-1485.	1.5	17
157	Mitochondrial DNA Phylogeography of the North American Brown Bear and Implications for Conservation. Conservation Biology, 1998, 12, 408-417.	4.7	17
158	Social and genetic structure associated with migration in pronghorn. Biological Conservation, 2013, 168, 108-115.	4.1	17
159	Evaluation of Scat Deposition Transects versus Radio Telemetry for Developing a Species Distribution Model for a Rare Desert Carnivore, the Kit Fox. PLoS ONE, 2015, 10, e0138995.	2.5	17
160	Identifying gray wolf packs and dispersers using noninvasive genetic samples. Journal of Wildlife Management, 2016, 80, 1408-1419.	1.8	17
161	Genetic resolution of composition and phylogenetic placement of the isabelline bear. Ursus, 2007, 18, 129-131.	0.5	16
162	A select panel of polymorphic microsatellite loci for individual identification of snow leopards (Panthera uncia). Molecular Ecology Notes, 2007, 7, 311-314.	1.7	16

#	Article	IF	CITATIONS
163	Behavioral connectivity among bighorn sheep suggests potential for disease spread. Journal of Wildlife Management, 2017, 81, 38-45.	1.8	16
164	Evaluating effective population size and genetic diversity of a declining kit fox population using contemporary and historical specimens. Ecology and Evolution, 2018, 8, 12011-12021.	1.9	16
165	High error rates for avian molecular sex identification primer sets applied to molted feathers. Journal of Field Ornithology, 2008, 79, 286-292.	0.5	15
166	Food Habits of Red Wolves during Pup-Rearing Season. Southeastern Naturalist, 2011, 10, 731-740.	0.4	15
167	The Challenges of Red Wolf Conservation and the Fate of an Endangered Species Recovery Program. Conservation Letters, 2015, 8, 338-344.	5.7	15
168	Effects of breeder turnover and harvest on group composition and recruitment in a social carnivore. Journal of Animal Ecology, 2017, 86, 1094-1101.	2.8	15
169	Species, sex and geo-location identification of seized tiger (Panthera tigris tigris) parts in Nepal—A molecular forensic approach. PLoS ONE, 2018, 13, e0201639.	2.5	15
170	Evaluating Population Structure of Black Bears on the Kenai Peninsula using Mitochondrial and Nuclear DNA Analyses. Journal of Mammalogy, 2007, 88, 1288-1299.	1.3	14
171	Hair of the dog: Obtaining samples from coyotes and wolves noninvasively. Wildlife Society Bulletin, 2011, 35, 105-111.	1.6	14
172	Evidence for a genetic basis for delayed dispersal in a cooperatively breeding canid. Animal Behaviour, 2012, 83, 1091-1098.	1.9	14
173	Examining the use of fecal pellet morphometry to differentiate age classes in Sonoran pronghorn. Wildlife Biology, 2016, 22, 217-227.	1.4	14
174	Quantifying and correcting for scat removal in noninvasive carnivore scat surveys. Wildlife Biology, 2016, 22, 45-54.	1.4	14
175	Phylogeography, genetic diversity, and connectivity of brown bear populations in Central Asia. PLoS ONE, 2019, 14, e0220746.	2.5	14
176	Landscape genetics of wolverines (Gulo gulo): scale-dependent effects of bioclimatic, topographic, and anthropogenic variables. Journal of Mammalogy, 2020, 101, 790-803.	1.3	14
177	Species limits and integrated taxonomy of the Idaho ground squirrel (<i>Urocitellus brunneus</i>): genetic and ecological differentiation. Journal of Mammalogy, 2012, 93, 589-604.	1.3	13
178	Integrating multiple genetic detection methods to estimate population density of social and territorial carnivores. Ecosphere, 2018, 9, e02479.	2.2	13
179	Natural re-colonization and admixture of wolves (Canis lupus) in the US Pacific Northwest: challenges for the protection and management of rare and endangered taxa. Heredity, 2019, 122, 133-149.	2.6	13
180	Gut microbiota and their putative metabolic functions in fragmented Bengal tiger population of Nepal. PLoS ONE, 2019, 14, e0221868.	2.5	13

#	Article	IF	CITATIONS
181	A spatially-explicit, individual-based demogenetic simulation framework for evaluating hybridization dynamics. Ecological Modelling, 2019, 401, 40-51.	2.5	13
182	Immigration does not offset harvest mortality in groups of a cooperatively breeding carnivore. Animal Conservation, 2020, 23, 750-761.	2.9	13
183	Ten polymorphic microsatellite markers for pronghorn (Antilocapra americana). Conservation Genetics Resources, 2010, 2, 81-84.	0.8	12
184	Comparing methods of estimating carnivore diets with uncertainty and imperfect detection. Wildlife Society Bulletin, 2019, 43, 651-660.	1.6	12
185	PERMANENT GENETIC RESOURCES: Ten polymorphic microsatellite markers for the pygmy rabbit (<i>Brachylagus idahoensis</i>). Molecular Ecology Resources, 2008, 8, 360-362.	4.8	11
186	Coyote <i>(Canis latrans)</i> mammalian prey diet shifts in response to seasonal vegetation change. Isotopes in Environmental and Health Studies, 2014, 50, 343-360.	1.0	11
187	Genetic Structure across Broad Spatial and Temporal Scales: Rocky Mountain Tailed Frogs (Ascaphus) Tj ETQq1 1	0,784314 2.4	rgBT /Overl
188	Non-invasive genetic sampling reveals diet shifts, but little difference in endoparasite richness and faecal glucocorticoids, in Belizean felids inside and outside protected areas. Journal of Tropical Ecology, 2016, 32, 226-239.	1.1	11
189	Genetic variation and relatedness in grizzly bears in the Prudhoe Bay region and adjacent areas in northern Alaska. Ursus, 2005, 16, 70-84.	0.5	10
190	Complementary Network-Based Approaches for Exploring Genetic Structure and Functional Connectivity in Two Vulnerable, Endemic Ground Squirrels. Frontiers in Genetics, 2017, 8, 81.	2.3	10
191	Landscape genetic inferences vary with sampling scenario for a pondâ€breeding amphibian. Ecology and Evolution, 2019, 9, 5063-5078.	1.9	10
192	Does harvest affect genetic diversity in grey wolves?. Molecular Ecology, 2020, 29, 3187-3195.	3.9	10
193	Rapid species identification of Sonoran pronghorn from fecal pellet DNA. Wildlife Society Bulletin, 2014, 38, 842-848.	1.6	9
194	Hostâ€adapted aphid populations differ in their migratory patterns and capacity to colonize crops. Journal of Applied Ecology, 2016, 53, 1382-1390.	4.0	9
195	Evidence for sex-specific reproductive senescence in monogamous cooperatively breeding red wolves. Behavioral Ecology and Sociobiology, 2017, 71, 1.	1.4	9
196	Introgressive hybridization between native and nonâ€local steelhead (<scp><i>Oncorhynchus) Tj ETQq0 0 0 rgBT 29, 292-302.</i></scp>	/Overlock 2.0	10 Tf 50 14 9
197	Stable pack abundance and distribution in a harvested wolf population. Journal of Wildlife Management, 2019, 83, 577-590.	1.8	9
198	Little fox on the prairie: genetic structure and diversity throughout the distribution of a grassland carnivore in the United States. Conservation Genetics, 2014, 15, 1503-1514.	1.5	8

#	Article	IF	CITATIONS
199	Reviving ghost alleles: Genetically admixed coyotes along the American Gulf Coast are critical for saving the endangered red wolf. Science Advances, 2022, 8, .	10.3	8
200	Multiplex preâ€amplification for noninvasive genetic sampling: is the extra effort worth it?. Molecular Ecology Resources, 2010, 10, 659-665.	4.8	7
201	Predictions of ecological and social impacts of alternative residential development policies to inform decision making in a rural landscape. Conservation Letters, 2011, 4, 423-432.	5.7	7
202	Evidence for <i>Bombus occidentalis</i> (Hymenoptera: Apidae) Populations in the Olympic Peninsula, the Palouse Prairie, and Forests of Northern Idaho. Journal of Insect Science, 2016, 16, 20.	1.5	7
203	Genetic health and population monitoring of two small black bear (Ursus americanus) populations in Alabama, with a regional perspective of genetic diversity and exchange. PLoS ONE, 2017, 12, e0186701.	2.5	7
204	Nuclear and Mitochondrial DNA Analyses of Golden Eagles (Aquila chrysaetos canadensis) from Three Areas in Western North America; Initial Results and Conservation Implications. PLoS ONE, 2016, 11, e0164248.	2.5	7
205	Intrinsic traits of woodland caribou Rangifer tarandus caribou calves depredated by black bears Ursus americanus and coyotes Canis latrans. Wildlife Biology, 2019, 2019, .	1.4	7
206	Development and characterization of fourteen novel microsatellite markers for the chestnut short-tailed fruit bat (<i>Carollia castanea</i>), and cross-amplification to related species. PeerJ, 2016, 4, e2465.	2.0	7
207	Genetic versus Census Estimators of the Opportunity for Sexual Selection in the Wild. American Naturalist, 2012, 179, 451-462.	2.1	6
208	Comparing telemetry and fecal dna sampling methods to quantify survival and dispersal of juvenile pygmy rabbits. Wildlife Society Bulletin, 2015, 39, 413-421.	1.6	6
209	Consequences for conservation: population density and genetic effects on reproduction of an endangered lagomorph. Ecological Applications, 2016, 26, 784-795.	3.8	6
210	Examining spatial patterns of selection and use for an altered predator guild. Oecologia, 2017, 185, 725-735.	2.0	6
211	Evaluating otter reintroduction outcomes using genetic spatial capture–recapture modified for dendritic networks. Ecology and Evolution, 2021, 11, 15047-15061.	1.9	6
212	PERMANENT GENETIC RESOURCES: Characterization of microsatellite markers for the almendro (<i>Dipteryx panamensis</i>), a tetraploid rainforest tree. Molecular Ecology Resources, 2008, 8, 425-427.	4.8	5
213	Genetic evidence of inbreeding avoidance in pronghorn. Journal of Zoology, 2012, 288, 119-126.	1.7	5
214	Consideration of sample source for establishing reliable genetic microsatellite data from mammalian carnivore specimens held in natural history collections. Journal of Mammalogy, 2019, 100, 1678-1689.	1.3	5
215	Comparing performance of multiple non-invasive genetic capture–recapture methods for abundance estimation: a case study with the Sonoran pronghorn <i>Antilocapra americana sonoriensis</i> . Oryx, 2020, 54, 412-420.	1.0	5
216	Primers to highly conserved elements optimized for qPCRâ€based telomere length measurement in vertebrates. Molecular Ecology Resources, 2021, 21, 59-67.	4.8	5

#	Article	IF	CITATIONS
217	The role of neutral and adaptive genomic variation in population diversification and speciation in two ground squirrel species of conservation concern. Molecular Ecology, 2021, 30, 4673-4694.	3.9	5
218	Cell-free transfer of sterols from dictyosome-like structures to plasma membrane vesicles of guinea pig testes. Protoplasma, 1990, 154, 8-15.	2.1	4
219	Genomic association with pathogen carriage in bighorn sheep (Ovis canadensis). Ecology and Evolution, 2021, 11, 2488-2502.	1.9	4
220	Longâ€ŧerm monitoring using DNA sampling reveals the dire demographic status of the critically endangered Gobi bear. Ecosphere, 2021, 12, e03696.	2.2	4
221	Detection criteria and postâ€field sample processing influence results and cost efficiency of occupancyâ€based monitoring. Ecological Applications, 2021, 31, e02404.	3.8	4
222	Teaching an Old Shell New Tricks: Extracting DNA from Current, Historical, and Ancient Mollusk Shells. BioScience, 2021, 71, 235-248.	4.9	4
223	Optimizing Selection of Brown Bear Hair for Noninvasive Genetic Analysis. Wildlife Society Bulletin, 2020, 44, 94-100.	1.6	4
224	Differentiating between Steller sea lion (<i>Eumetopias jubatus</i>) and northern fur seal (<i>Callorhinus ursinus</i>) scats through analysis of faecal DNA. Molecular Ecology Resources, 2011, 11, 166-170.	4.8	3
225	Robust molecular sex identification of beaver (Castor canadensis) from non-destructive samples. Conservation Genetics Resources, 2011, 3, 729-731.	0.8	3
226	Species designation of the Bruneau Dune tiger beetle (Cicindela waynei) is supported by phylogenetic analysis of mitochondrial DNA sequence data. Conservation Genetics, 2012, 13, 373-380.	1.5	3
227	Panmixia and Limited Interspecific Introgression in Coyotes (Canis latrans) from West Virginia and Virginia, USA. Journal of Heredity, 2017, 108, 608-617.	2.4	3
228	Estimating Coyote Densities with Local, Discrete Bayesian Captureâ€Recapture Models. Journal of Wildlife Management, 2021, 85, 73-86.	1.8	3
229	Genetic Diversity and Divergence among Bighorn Sheep from Reintroduced Herds in Washington and Idaho. Journal of Wildlife Management, 2021, 85, 1214-1231.	1.8	3
230	Ordered vs. unordered samples: response to Bromaghin. Molecular Ecology, 2007, 16, 4885-4885.	3.9	2
231	First Record of Multiple Paternity in the Pygmy Rabbit (<i>Brachylagus idahoensis</i>): Evidence from Analysis of 16 Microsatellite Loci. Western North American Naturalist, 2011, 71, 271-275.	0.4	2
232	Detecting pygmy rabbits (Brachylagus idahoensis) using DNA extracted from fecal pellets of mixed-species groups. Wildlife Society Bulletin, 2013, 37, n/a-n/a.	1.6	2
233	Combining Harvest and Genetics to Estimate Reproduction in Wolves. Journal of Wildlife Management, 2020, 84, 492-504.	1.8	2
234	Empirical comparisons of abundance estimators for two sympatric carnivores using noninvasive genetic sampling. Wildlife Biology, 2019, 2019, .	1.4	2

#	Article	IF	CITATIONS
235	Genetic diversity and population structure for ocelots (<i>Leopardus pardalis</i>) in Costa Rica. Journal of Mammalogy, 2022, 103, 68-81.	1.3	2
236	Chromosomal-level reference genome assembly of the North American wolverine (<i>Gulo gulo) Tj ETQq0 0 0 rg</i>	BT /Qverlo	ck_{2}^{10} Tf 50 70

237	Genetics as a Tool for Biodiversity Conservation: Examples from Central America. , 2015, , 573-602.		1
238	Molecular evaluation of American black bear prey consumption following diversionary feeding. Ursus, 2021, 2021, .	0.5	0
239	Genetic Evidence Confirms the Presence of Pygmy Rabbits in Colorado. Journal of Fish and Wildlife Management, 2014, 5, 118-123.	0.9	Ο
240	Genetics, Landscape. , 2024, , 503-523.		0