
Franz L Ricklefs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3028104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA methylation-based classification of central nervous system tumours. Nature, 2018, 555, 469-474.	27.8	1,872
2	Acquisition of Granule Neuron Precursor Identity Is a Critical Determinant of Progenitor Cell Competence to Form Shh-Induced Medulloblastoma. Cancer Cell, 2008, 14, 123-134.	16.8	572
3	Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Science Advances, 2018, 4, eaar2766.	10.3	416
4	Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncology, The, 2013, 14, 1200-1207.	10.7	307
5	Sarcoma classification by DNA methylation profiling. Nature Communications, 2021, 12, 498.	12.8	237
6	Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. Cancer Cell, 2016, 30, 891-908.	16.8	191
7	The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches. Cell Reports, 2016, 15, 2500-2509.	6.4	156
8	The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Reports, 2022, 17, 307-320.	4.8	138
9	Quantification of extracellular vesicles <i>in vitro</i> and <i>in vivo</i> using sensitive bioluminescence imaging. Journal of Extracellular Vesicles, 2020, 9, 1800222.	12.2	114
10	Primary intracranial spindle cell sarcoma with rhabdomyosarcoma-like features share a highly distinct methylation profile and DICER1 mutations. Acta Neuropathologica, 2018, 136, 327-337.	7.7	104
11	Machine learning analysis of DNA methylation profiles distinguishes primary lung squamous cell carcinomas from head and neck metastases. Science Translational Medicine, 2019, 11, .	12.4	100
12	Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated. Journal of Clinical Oncology, 2021, 39, 3839-3852.	1.6	93
13	Imaging flow cytometry facilitates multiparametric characterization of extracellular vesicles in malignant brain tumours. Journal of Extracellular Vesicles, 2019, 8, 1588555.	12.2	86
14	Extracellular Vesicles from High-Grade Glioma Exchange Diverse Pro-oncogenic Signals That Maintain Intratumoral Heterogeneity. Cancer Research, 2016, 76, 2876-2881.	0.9	85
15	Subgroup-specific immune and stromal microenvironment in medulloblastoma. OncoImmunology, 2018, 7, e1462430.	4.6	77
16	CD73-mediated adenosine production by CD8 T cell-derived extracellular vesicles constitutes an intrinsic mechanism of immune suppression. Nature Communications, 2021, 12, 5911.	12.8	66
17	Genome-wide methylation profiling of glioblastoma cell-derived extracellular vesicle DNA allows tumor classification. Neuro-Oncology, 2021, 23, 1087-1099.	1.2	59
18	MicroRNA Signatures and Molecular Subtypes of Glioblastoma: The Role of Extracellular Transfer. Stem Cell Reports, 2017, 8, 1497-1505.	4.8	58

#	Article	IF	CITATIONS
19	Nonmetastatic Medulloblastoma of Early Childhood: Results From the Prospective Clinical Trial HIT-2000 and An Extended Validation Cohort. Journal of Clinical Oncology, 2020, 38, 2028-2040.	1.6	58
20	Cytomegalovirus promotes murine glioblastoma growth via pericyte recruitment and angiogenesis. Journal of Clinical Investigation, 2019, 129, 1671-1683.	8.2	52
21	Atypical teratoid/rhabdoid tumors (ATRTs) with SMARCA4 mutation are molecularly distinct from SMARCB1-deficient cases. Acta Neuropathologica, 2021, 141, 291-301.	7.7	47
22	Molecular characterization of histopathological ependymoma variants. Acta Neuropathologica, 2020, 139, 305-318.	7.7	43
23	Cross-Species Genomics Reveals Oncogenic Dependencies in ZFTA/C11orf95 Fusion–Positive Supratentorial Ependymomas. Cancer Discovery, 2021, 11, 2230-2247.	9.4	39
24	Immunologic Profiling of Mutational and Transcriptional Subgroups in Pediatric and Adult High-Grade Gliomas. Cancer Immunology Research, 2019, 7, 1401-1411.	3.4	35
25	MicroRNA-Mediated Dynamic Bidirectional Shift between the Subclasses of Glioblastoma Stem-like Cells. Cell Reports, 2017, 19, 2026-2032.	6.4	33
26	Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors. Acta Neuropathologica, 2021, 142, 827-839.	7.7	33
27	Immune Characterization in Aneurysmal Subarachnoid Hemorrhage Reveals Distinct Monocytic Activation and Chemokine Patterns. Translational Stroke Research, 2020, 11, 1348-1361.	4.2	32
28	Germline variants in SMARCB1 and other members of the BAF chromatin-remodeling complex across human disease entities: a meta-analysis. European Journal of Human Genetics, 2018, 26, 1083-1093.	2.8	30
29	ATOH1 Promotes Leptomeningeal Dissemination and Metastasis of Sonic Hedgehog Subgroup Medulloblastomas. Cancer Research, 2017, 77, 3766-3777.	0.9	29
30	Preferential sensitivity to HDAC inhibitors in tumors with CREBBP mutation. Cancer Gene Therapy, 2020, 27, 294-300.	4.6	29
31	Updates in the classification of ependymal neoplasms: The 2021 WHO Classification and beyond. Brain Pathology, 2022, 32, e13068.	4.1	29
32	Medulloblastoma: experimental models and reality. Acta Neuropathologica, 2017, 134, 679-689.	7.7	25
33	Macrophage-tumor cell interaction promotes ATRT progression and chemoresistance. Acta Neuropathologica, 2020, 139, 913-936.	7.7	24
34	Molecular profiling of an osseous metastasis in glioblastoma during checkpoint inhibition: potential mechanisms of immune escape. Acta Neuropathologica Communications, 2020, 8, 28.	5.2	24
35	Seizures as presenting symptom in patients with glioblastoma. Epilepsia, 2019, 60, 149-154.	5.1	22
36	Therapeutic implications of improved molecular diagnostics for rare CNS embryonal tumor entities: results of an international, retrospective study. Neuro-Oncology, 2021, 23, 1597-1611.	1.2	22

#	Article	IF	CITATIONS
37	Clinical outcomes, Kadish-INSICA staging and therapeutic targeting of somatostatin receptor 2 in olfactory neuroblastoma. European Journal of Cancer, 2022, 162, 221-236.	2.8	22
38	TCF4 (E2-2) harbors tumor suppressive functions in SHH medulloblastoma. Acta Neuropathologica, 2019, 137, 657-673.	7.7	20
39	FASN Is a Biomarker Enriched in Malignant Glioma-Derived Extracellular Vesicles. International Journal of Molecular Sciences, 2020, 21, 1931.	4.1	20
40	Mutations within FGFR1 are associated with superior outcome in a series of 83 diffuse midline gliomas with H3F3A K27M mutations. Acta Neuropathologica, 2021, 141, 323-325.	7.7	20
41	Newly Diagnosed Metastatic Intracranial Ependymoma in Children: Frequency, Molecular Characteristics, Treatment, and Outcome in the Prospective HIT Series. Oncologist, 2019, 24, e921-e929.	3.7	19
42	Immune Escape Mediated by Exosomal PD‣1 in Cancer. Advanced Biology, 2020, 4, e2000017.	3.0	19
43	Initial pupil status is a strong predictor for in-hospital mortality after aneurysmal subarachnoid hemorrhage. Scientific Reports, 2020, 10, 4764.	3.3	19
44	Local and systemic therapy of recurrent ependymoma in children and adolescents: short- and long-term results of the E-HIT-REZ 2005 study. Neuro-Oncology, 2021, 23, 1012-1023.	1.2	19
45	Machine learning models predict the primary sites of head and neck squamous cell carcinoma metastases based on <scp>DNA</scp> methylation. Journal of Pathology, 2022, 256, 378-387.	4.5	19
46	Detailed Clinical and Histopathological Description of 8 Cases of Molecularly Defined CNS Neuroblastomas. Journal of Neuropathology and Experimental Neurology, 2021, 80, 52-59.	1.7	18
47	DIMEimmune: Robust estimation of infiltrating lymphocytes in CNS tumors from DNA methylation profiles. Oncolmmunology, 2021, 10, 1932365.	4.6	17
48	The basic helixâ€loopâ€helix transcription factor TCF4 impacts brain architecture as well as neuronal morphology and differentiation. European Journal of Neuroscience, 2020, 51, 2219-2235.	2.6	16
49	Fatal Myelotoxicity Following Palliative Chemotherapy With Cisplatin and Gemcitabine in a Patient With Stage IV Cholangiocarcinoma Linked to Post Mortem Diagnosis of Fanconi Anemia. Frontiers in Oncology, 2019, 9, 420.	2.8	14
50	Primary central nervous system sarcoma with <i>DICER1</i> mutation—treatment results of a novel molecular entity in pediatric Peruvian patients. Cancer, 2022, 128, 697-707.	4.1	14
51	Coâ€occurrence of schwannomatosis and rhabdoid tumor predisposition syndrome 1. Molecular Genetics & Genomic Medicine, 2018, 6, 627-637.	1.2	13
52	Accurate calling of <i>KIAA1549â€BRAF</i> fusions from DNA of human brain tumours using methylation arrayâ€based copy number and gene panel sequencing data. Neuropathology and Applied Neurobiology, 2021, 47, 406-414.	3.2	12
53	Neurofibromatosis type 2 predisposes to ependymomas of various localization, histology, and molecular subtype. Acta Neuropathologica, 2021, 141, 971-974.	7.7	12
54	Predictive factors associated with ventriculoperitoneal shunting after posterior fossa tumor surgery in children. Child's Nervous System, 2019, 35, 779-788.	1.1	11

#	Article	IF	CITATIONS
55	Comprehensive profiling of myxopapillary ependymomas identifies a distinct molecular subtype with relapsing disease. Neuro-Oncology, 2022, 24, 1689-1699.	1.2	11
56	The simplified acute physiology score II to predict hospital mortality in aneurysmal subarachnoid hemorrhage. Acta Neurochirurgica, 2015, 157, 2051-2059.	1.7	10
57	Cauda equina paragangliomas express HOXB13. Neuropathology and Applied Neurobiology, 2021, 47, 889-890.	3.2	9
58	Single-cell transcriptomics identifies potential cells of origin of MYC rhabdoid tumors. Nature Communications, 2022, 13, 1544.	12.8	9
59	Ependymoma relapse goes along with a relatively stable epigenome, but a severely altered tumor morphology. Brain Pathology, 2021, 31, 33-44.	4.1	8
60	An extracellular vesicle-related gene expression signature identifies high-risk patients in medulloblastoma. Neuro-Oncology, 2021, 23, 586-598.	1.2	8
61	Oncolytic Virus Therapy Alters the Secretome of Targeted Glioblastoma Cells. Cancers, 2021, 13, 1287.	3.7	8
62	MPAPASS software enables stitched multiplex, multidimensional EV repertoire analysis and a standard framework for reporting bead-based assays. Cell Reports Methods, 2022, 2, 100136.	2.9	8
63	Genome-wide DNA methylation profiles distinguish silent from non-silent ACTH adenomas. Acta Neuropathologica, 2020, 140, 95-97.	7.7	7
64	Clinical evidence for a biological effect of epigenetically active decitabine in relapsed or progressive rhabdoid tumors. Pediatric Blood and Cancer, 2021, 68, e29267.	1.5	7
65	Disruption of GMNC-MCIDAS multiciliogenesis program is critical in choroid plexus carcinoma development. Cell Death and Differentiation, 2022, 29, 1596-1610.	11.2	7
66	DNA methylation subclass receptor tyrosine kinase II (RTK II) is predictive for seizure development in glioblastoma patients. Neuro-Oncology, 2022, 24, 1886-1897.	1.2	7
67	Decision-making in temporal lobe epilepsy surgery based on invasive stereo-electroencephalography (sEEG). Neurosurgical Review, 2020, 43, 1403-1408.	2.4	6
68	Systemic chemotherapy of pediatric recurrent ependymomas: results from the German HIT-REZ studies. Journal of Neuro-Oncology, 2021, 155, 193-202.	2.9	6
69	Diagnostic potential of extracellular vesicles in meningioma patients. Neuro-Oncology, 2022, 24, 2078-2090.	1.2	6
70	Mass Spectrometric Lipid Profiles of Picosecond Infrared Laserâ€Generated Tissue Aerosols Discriminate Different Brain Tissues. Lasers in Surgery and Medicine, 2020, 52, 228-234.	2.1	5
71	Malignant gliomas with H3F3A G34R mutation or MYCN amplification in pediatric patients with Li Fraumeni syndrome. Acta Neuropathologica, 2021, 142, 591-593.	7.7	5
72	Brahma-related gene 1 has time-specific roles during brain and eye development. Development (Cambridge), 2021, 148, .	2.5	5

#	Article	IF	CITATIONS
73	Features of tumor texture influence surgery and outcome in intracranial meningioma. Neuro-Oncology Advances, 2020, 2, vdaa113.	0.7	4
74	Double adenomas of the pituitary reveal distinct lineage markers, copy number alterations, and epigenetic profiles. Pituitary, 2021, 24, 904-913.	2.9	4
75	Simultaneous Brg1 Knockout and MYCN Overexpression in Cerebellar Granule Neuron Precursors Is Insufficient to Drive Tumor Formation but Temporarily Enhances their Proliferation and Delays their Migration. Cerebellum, 2021, 20, 410-419.	2.5	4
76	OUP accepted manuscript. Cerebral Cortex, 2020, 30, 1382-1392.	2.9	4
77	Long-term survival of an adolescent glioblastoma patient under treatment with vinblastine and valproic acid illustrates importance of methylation profiling. Child's Nervous System, 2022, 38, 479-483.	1.1	3
78	SMARCB1-deficient and SMARCA4-deficient Malignant Brain Tumors With Complex Copy Number Alterations and TP53 Mutations May Represent the First Clinical Manifestation of Li-Fraumeni Syndrome. American Journal of Surgical Pathology, 2022, 46, 1277-1283.	3.7	3
79	OLIG2 Is a Determinant for the Relapse of <i>MYC</i> -Amplified Medulloblastoma. Clinical Cancer Research, 2022, 28, 4278-4291.	7.0	3
80	Group 3 medulloblastoma in a patient with a GYS2 germline mutation and glycogen storage disease 0a. Child's Nervous System, 2018, 34, 581-584.	1.1	2
81	Clinical and molecular characterization of isolated M1 disease in pediatric medulloblastoma: experience from the German HIT-MED studies. Journal of Neuro-Oncology, 2022, 157, 37-48.	2.9	2
82	Increased replication stress and R-loop accumulation in EGFRvIII-expressing glioblastoma present new therapeutic opportunities. Neuro-Oncology Advances, 2022, 4, vdab180.	0.7	2
83	ETMR-06. Molecular and clinical characteristics of CNS tumors with <i>BCOR(L1</i>) fusion/internal tandem duplication. Neuro-Oncology, 2022, 24, i50-i50.	1.2	2
84	ATRT-09. Outcome and therapeutic interventions in relapsed and refractory ATRT – The EU-RHAB perspective. Neuro-Oncology, 2022, 24, i4-i4.	1.2	2
85	Circulating cell-free DNA and its clinical utility in cancer. Laboratoriums Medizin, 2022, 46, 265-272.	0.6	2
86	NFM-11. PEDIATRIC MENINGIOMAS ARE MOLECULARLY DISTINCT FROM ADULT COUNTERPARTS. Neuro-Oncology, 2018, 20, i144-i145.	1.2	1
87	Relapse of a group 4 medulloblastoma after 18Âyears as proven by histology and DNA methylation profiling. Child's Nervous System, 2019, 35, 1029-1033.	1.1	1
88	EXTH-70. ESTABLISHMENT OF INTRAVENTRICULAR SHH INHIBITION AS A THERAPEUTIC OPTION IN YOUNG PATIENTS WITH MEDULLOBLASTOMA. Neuro-Oncology, 2021, 23, vi179-vi179.	1.2	1
89	Enhancing Safety in Epilepsy Surgery (EASINESS): Study Protocol for a Retrospective, Multicenter, Open Registry. Frontiers in Neurology, 2021, 12, 782666.	2.4	1
90	OTHR-41. Amplification of the PLAG family genes – PLAGL1 and PLAGL2 – is a key feature of a novel embryonal CNS tumor type. Neuro-Oncology, 2022, 24, i156-i156.	1.2	1

#	Article	IF	CITATIONS
91	MEDB-67. Subgroup specific analysis of cellular metabolism in medulloblastoma. Neuro-Oncology, 2022, 24, i122-i122.	1.2	1
92	MEDB-04. Young children with metastatic medulloblastoma: frequent requirement for radiotherapy in children with non-WNT/non-SHH medulloblastoma despite highly intensified chemotherapy – Results of the MET-HIT2000-BIS4 trial. Neuro-Oncology, 2022, 24, i104-i104.	1.2	1
93	RARE-15. Astroblastoma, <i>MN1</i> altered comprises two molecularly and clinically distinct subgroups defined by the fusion partners <i>BEND2</i> and <i>CXXC5</i> . Neuro-Oncology, 2022, 24, i12-i13.	1.2	1
94	CBIO-12. SIX EXTRACELLULAR VESICLE RELATED GENES CAN EXPLAIN THE PRO-TUMORIGENIC BEHAVIOR OF HETEROGENEOUS HIGH GRADE GLIOMAS. Neuro-Oncology, 2016, 18, vi37-vi37.	1.2	0
95	IMMU-10. EXPRESSION OF PD-L2, IN GLIOBLASTOMA; IMPLICATIONS AS AÂBIOMARKER FOR IMMUNOTHERAPY. Neuro-Oncology, 2017, 19, vi114-vi114.	1.2	0
96	CBMT-12. FATTY ACID SYNTHASE POSITIVE EVs AS NOVEL BIOMARKERS IN BRAIN CANCER Neuro-Oncology, 2018, 20, vi34-vi35.	1.2	0
97	TMOD-35. CAN RARE SOX9-POSITIVE CELLS INCITE MYC-DRIVEN MEDULLOBLASTOMA RECURRENCE?. Neuro-Oncology, 2018, 20, vi276-vi276.	1.2	0
98	ATRT-21. COMPARATIVE INTEGRATIVE ANALYSIS OF PRIMARY AND RELAPSED ATYPICAL TERATOID/RHABDOID TUMORS (AT/RTs). Neuro-Oncology, 2018, 20, i32-i32.	1.2	0
99	CSIG-09. PROTEOMIC ANALYSIS OF MENINGIOMA CELL-DERIVED EXTRACELLULAR VESICLES: FIRST OF A KIND. Neuro-Oncology, 2019, 21, vi45-vi46.	1.2	0
100	CSIG-11. CENTRAL NERVOUS SYSTEM TUMOR PATIENTS HAVE ELEVATED LEVELS OF CIRCULATING EXTRACELLULAR VESICLES. Neuro-Oncology, 2019, 21, vi46-vi46.	1.2	0
101	MEDU-26. LATENT SOX9-POSITIVE CELLS RESPONSIBLE FOR MYC-DRIVEN MEDULLOBLASTOMA RECURRENCE. Neuro-Oncology, 2019, 21, ii108-ii109.	1.2	0
102	MNGI-02. FEATURES OF TUMOR TEXTURE INFLUENCE SURGERY AND OUTCOME IN INTRACRANIAL MENINGIOMA. Neuro-Oncology, 2019, 21, vi139-vi139.	1.2	0
103	Evidence for a lowâ€penetrant extended phenotype of rhabdoid tumor predisposition syndrome type 1 from a kindred with gain of <i>SMARCB1</i> exon 6. Pediatric Blood and Cancer, 2021, 68, e29185.	1.5	0
104	EPEN-09. IMPACT OF MOLECULAR SUBGROUP ON OUTCOME FOR INFANTS <12 MONTHS WITH INTRACRANIAL EPENDYMOMA - GERMAN EXPERIENCE FROM HIT2000, INTERIM-2000-REGISTRY AND I-HIT-MED REGISTRY. Neuro-Oncology, 2020, 22, iii309-iii309.	1.2	0
105	ATRT-13. DIFFERENT CELLS OF ORIGIN PAVE THE WAY FOR MOLECULAR HETEROGENEITY IN RHABDOID TUMORS. Neuro-Oncology, 2020, 22, iii278-iii278.	1.2	0
106	MBRS-10. QUIESCENT SOX9-POSITIVE CELLS BEHIND MYC DRIVEN MEDULLOBLASTOMA RECURRENCE. Neuro-Oncology, 2020, 22, iii400-iii400.	1.2	0
107	MBCL-06. RISK STRATIFICATION IMPROVEMENT OF THE HIT2000 AND I-HIT-MED COHORTS USING MOLECULAR SUBTYPES I-VIII OF GROUP 3/4 MEDULLOBLASTOMAS. Neuro-Oncology, 2020, 22, iii388-iii388.	1.2	0
108	Analysis of Intracerebroventricular (ICV) Device Function and Integrity under Long-Term ICV-ERT in CLN2 Patients. Neuropediatrics, 2021, 52, .	0.6	0

#	Article	IF	CITATIONS
109	Co-activation of Sonic hedgehog and Wnt signaling in murine retinal precursor cells drives ocular lesions with features of intraocular medulloepithelioma. Oncogenesis, 2021, 10, 78.	4.9	0
110	PATH-31. METHYLATION SUBCLASS RECEPTOR TYROSINE KINASE II AS A DRIVER FOR SEIZURES IN IDH-WILDTYPE GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi121-vi122.	1.2	0
111	TMOD-25. LATENT SOX9-POSITIVE CELLS BEHIND MYC-DRIVEN MEDULLOBLASTOMA RELAPSE. Neuro-Oncology, 2021, 23, vi220-vi221.	1.2	Ο
112	BIOM-19. DECIPHERING THE METHYLATION SIGNATURE OF CIRCULATING EXTRACELLULAR VESICLE DNA FOR CNS TUMOR CLASSIFICATION. Neuro-Oncology, 2021, 23, vi14-vi14.	1.2	0
113	PATH-34. MOLECULAR AND CLINICAL HETEROGENEITY WITHIN SPINAL EPENDYMOMAS. Neuro-Oncology, 2021, 23, vi122-vi122.	1.2	0
114	TMOD-26. MYC OVEREXPRESSION AND SMARCA4 LOSS IN GRANULE CELL PRECURSORS COOPERATE TO DRIVE MEDULLOBLASTOMA FORMATION IN MICE. Neuro-Oncology, 2021, 23, vi221-vi221.	1.2	0
115	EXTH-69. FUNCTIONAL GENOMICS UNCOVER GENETIC DEPENDENCIES IN ATRTS. Neuro-Oncology, 2021, 23, vi179-vi179.	1.2	0
116	ALK inhibition as a salvage therapy for a relapsed unclassifiable sarcomatous CNS tumor with EML4/ALK fusion in an infant. Pediatric Blood and Cancer, 2022, 69, e29594.	1.5	0
117	MEDB-50. Assessment of cellular radiosensitivity and DNA repair in medulloblastoma cell lines and patient-derivded xenograft slice cultures. Neuro-Oncology, 2022, 24, i117-i118.	1.2	0
118	ATRT-12. LIN28A expression correlates with poor prognosis and the MYC subgroup in AT/RTs. Neuro-Oncology, 2022, 24, i5-i5.	1.2	0
119	EPEN-13. Clinically relevant molecular hallmarks of PFA ependymomas display intratumoral heterogeneity and correlate with tumor morphology. Neuro-Oncology, 2022, 24, i41-i41.	1.2	0
120	ETMR-05. Single-cell transcriptomics of ETMR reveals developmental cellular programs and tumor-pericyte communications in the microenvironment. Neuro-Oncology, 2022, 24, i50-i50.	1.2	0
121	EPEN-19. Impact of molecular classification on prognosis in children and adolescents with spinal ependymoma: Results from the HIT-MED database. Neuro-Oncology, 2022, 24, i42-i43.	1.2	0
122	MEDB-37. Chemotherapy response prediction by molecular risk factors in metastatic childhood medulloblastoma. Neuro-Oncology, 2022, 24, i113-i113.	1.2	0
123	MEDB-41. Identifying a subgroup of patients with early childhood sonic hedgehog-activated medulloblastoma with unfavorable prognosis after treatment with radiation-sparing regimens including intraventricular methotrexate. Neuro-Oncology, 2022, 24, i114-i115.	1.2	0
124	HGG-45. Characterization of spinal diffuse midline gliomas, H3 K28M-mutant. Neuro-Oncology, 2022, 24, i71-i71.	1.2	0
125	DIPG-42. Diffuse midline gliomas, H3K27-altered as an interdisciplinary challenge. Neuro-Oncology, 2022, 24, i28-i28.	1.2	0
126	ATRT-08. SMARCB1- and SMARCA4-deficient malignant brain tumors with complex copy number alterations and <i>TP53</i> mutations may represent the first clinical manifestation of Li-Fraumeni syndrome. Neuro-Oncology, 2022, 24, i4-i4.	1.2	0

#	Article	IF	CITATIONS
127	MEDB-12. Severe developmental abnormalities and proliferative cerebellar lesions induced by combined activity of Wnt signalling and loss of SMARCA4. Neuro-Oncology, 2022, 24, i106-i106.	1.2	0
128	LGC-20. Defining subgroups in low grade gliomas by their immune and stromal microenvironment. Neuro-Oncology, 2022, 24, i92-i92.	1.2	0
129	ATRT-15. Primordial germ cells identified as one potential cell of origin of MYC rhabdoid tumors. Neuro-Oncology, 2022, 24, i6-i6.	1.2	0
130	MODL-03. Establishment of intraventricular Shh inhibition as a therapeutic option for young patients with medulloblastoma. Neuro-Oncology, 2022, 24, i168-i168.	1.2	0
131	EPEN-27. Epigenetic dissection of spinal ependymomas (SP-EPN) separates tumors with and without <i>NF2</i> mutation. Neuro-Oncology, 2022, 24, i44-i45.	1.2	0
132	PATH-04. Array-based global DNA Methylation profiling of mouse brain tumors allows comparison to human tumors. Neuro-Oncology, 2022, 24, i158-i159.	1.2	0
133	MEDB-11. MYC overexpression and SMARCA4 loss in cerebellar granule cell precursors cooperate to drive medulloblastoma formation in mice. Neuro-Oncology, 2022, 24, i106-i106.	1.2	0
134	EPEN-04. Refinement of molecular and clinical characteristics in a cohort of 1,801 ependymomas. Neuro-Oncology, 2022, 24, i38-i39.	1.2	0
135	EPEN-06. Comprehensive profiling of myxopapillary ependymomas identifies a distinct molecular subtype with relapsing disease. Neuro-Oncology, 2022, 24, i39-i39.	1.2	0