Espen Hagen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3028069/publications.pdf

Version: 2024-02-01

840776 940533 20 890 11 16 citations h-index g-index papers 25 25 25 999 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Towards reliable spike-train recordings from thousands of neurons with multielectrodes. Current Opinion in Neurobiology, 2012, 22, 11-17.	4.2	184
2	LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Frontiers in Neuroinformatics, 2013, 7, 41.	2.5	147
3	Estimation of population firing rates and current source densities from laminar electrode recordings. Journal of Computational Neuroscience, 2008, 24, 291-313.	1.0	103
4	Multimodal Modeling of Neural Network Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0. Frontiers in Neuroinformatics, 2018, 12, 92.	2.5	103
5	Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks. Cerebral Cortex, 2016, 26, 4461-4496.	2.9	89
6	ViSAPy: A Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms. Journal of Neuroscience Methods, 2015, 245, 182-204.	2.5	45
7	Biophysically detailed forward modeling of the neural origin of EEG and MEG signals. NeuroImage, 2021, 225, 117467.	4.2	37
8	Alterations in Schizophrenia-Associated Genes Can Lead to Increased Power in Delta Oscillations. Cerebral Cortex, 2019, 29, 875-891.	2.9	30
9	Focal Local Field Potential Signature of the Single-Axon Monosynaptic Thalamocortical Connection. Journal of Neuroscience, 2017, 37, 5123-5143.	3.6	28
10	Biophysical Psychiatry—How Computational Neuroscience Can Help to Understand the Complex Mechanisms of Mental Disorders. Frontiers in Psychiatry, 2019, 10, 534.	2.6	19
11	Estimation of neural network model parameters from local field potentials (LFPs). PLoS Computational Biology, 2020, 16, e1007725.	3.2	18
12	Conditions for wave trains in spiking neural networks. Physical Review Research, 2020, 2, .	3.6	15
13	VIOLAâ€"A Multi-Purpose and Web-Based Visualization Tool for Neuronal-Network Simulation Output. Frontiers in Neuroinformatics, 2018, 12, 75.	2.5	12
14	Biophysical Network Modelling of the dLGN Circuit: Different Effects of Triadic and Axonal Inhibition on Visual Responses of Relay Cells. PLoS Computational Biology, 2016, 12, e1004929.	3.2	12
15	An automated online positioning system and simulation environment for multi-electrodes in extracellular recordings., 2010, 2010, 593-7.		10
16	RippleNet: a Recurrent Neural Network for Sharp Wave Ripple (SPW-R) Detection. Neuroinformatics, 2021, 19, 493-514.	2.8	9
17	26th Annual Computational Neuroscience Meeting (CNS*2017): Part 2. BMC Neuroscience, 2017, 18, .	1.9	7
18	LFPy: Multimodal Modeling of Extracellular Neuronal Recordings in Python. , 2019, , 1-10.		3

#	Article	IF	CITATIONS
19	Modeling the LFP footprint of unitary thalamic inputs to sensory cortex. BMC Neuroscience, 2011, 12, .	1.9	0
20	LFPy: Multimodal Modeling of Extracellular Neuronal Recordings in Python. , 2022, , 1791-1800.		0